2個のサイコロだけど難問!! 日大三 (西東京) - 質問解決D.B.(データベース)

2個のサイコロだけど難問!! 日大三 (西東京)

問題文全文(内容文):
2つのさいころA,Bを同時に投げ、Aの目の数をa、Bの目の数をbとする。
$2a^2-3ab+b^2$が正の奇数となる確率を求めよ。
日本大学第三高等学校
単元: #数A#場合の数と確率#確率#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
2つのさいころA,Bを同時に投げ、Aの目の数をa、Bの目の数をbとする。
$2a^2-3ab+b^2$が正の奇数となる確率を求めよ。
日本大学第三高等学校
投稿日:2023.08.09

<関連動画>

2023高校入試解説4問目 もはや高校範囲 西大和学園

アイキャッチ画像
単元: #数学(中学生)#数A#場合の数と確率#高校入試過去問(数学)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
1⃣ 2⃣ 2⃣ 3⃣ 4⃣ 5⃣と書かれたカードがある。
5枚のカードを選んで1列に並べてできる5桁の整数は全部で何通り?

西大和学園高等学校
この動画を見る 

福田の数学〜慶應義塾大学2023年理工学部第3問〜確率と漸化式(難問)Part3

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#数列#漸化式#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{3}$ 何も入っていない2つの袋A,Bがある。いま、「硬貨を1枚投げて表が出たら袋A、裏が出たら袋Bを選び、以下のルールに従って選んだ袋の中に玉を入れる」
という操作を繰り返す。
ルール
・選んだ袋の中に入っている玉の数がもう一方の袋の中に入っている玉の数より多いか、2つの袋の中に入っている玉の数が同じとき、選んだ袋の中に玉を1個入れる。
・選んだ袋の中に入っている玉の数がもう一方の袋の中に入っている玉の数より少ないとき、選んだ袋の中に入っている玉の数が、もう一方の袋の中に入っている玉の数と同じになるまで選んだ袋の中に玉をいれる。

たとえば、上の操作を3回行ったとき、硬貨が順に表、表、裏と出たとすると、
A,B2つの袋の中の玉の数は次のように変化する。
A:0個 B:0個 → A:1個 B:0個 → A:2個 B:0個 → A:2個 B:2個
(1)4回目の操作を終えたとき、袋Aの中に3個以上の玉が入っている確率は$\boxed{\ \ カ\ \ }$である。また、4回目の操作を終えた時点で袋Aの中に3個以上の玉が入っているという条件の下で、7回目の操作を終えたとき袋Bの中に入っている玉の数が3個以下である条件付き確率は$\boxed{\ \ キ\ \ }$である。
(2)$n$回目の操作を終えたとき、袋Aの中に入っている玉の数のほうが、袋Bの中に入っている玉の数より多い確率を$p_n$とする。
$p_{n+1}$を$p_n$を用いて表すと$p_{n+1}$=$\boxed{\ \ ク\ \ }$となり、これより$p_n$を$n$を用いて表すと$p_n$=$\boxed{\ \ ケ\ \ }$となる。
(3)$n$回目($n$≧4)の操作を終えたとき、袋Aの中に$n-1$個以上の玉が入っている確率は$\boxed{\ \ コ\ \ }$であり、$n-2$個以上の玉が入っている確率は$\boxed{\ \ サ\ \ }$である。
この動画を見る 

数学「大学入試良問集」【5−3 カードの並べ方と確率】を宇宙一わかりやすく

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#数学(高校生)#埼玉医科大学
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
$1$から$6$までの数字を書いた6枚のカードを左から右に1列に並べるとき、次のようにカードが並ぶ確率を求めよ。
(1)
$1,2,3$のカードのうちの2枚が両端に並ぶ

(2)
$1$のカードが$2$または$3$のカードの隣に並ぶ

(3)
$1$と$6$のカードの間に2枚以上のカードが並ぶ

(4)
任意のカードについて、そのカードより左側にあるカードのうち、奇数カードの枚数が、偶数カードの枚数より少なくないように並ぶ。
この動画を見る 

【数検準2級】高校数学:数学検定準2級2次:問6

アイキャッチ画像
単元: #数A#数学検定・数学甲子園・数学オリンピック等#場合の数と確率#確率#数学検定#数学検定準2級#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
問6. AチームとBチームが野球の試合を行います。どの試合も、AチームがBチームに勝つ確率は1/3で、引き分けはないものとします。
これについて、次の問いに答えなさい。
(8) 3試合めまで終えた時点でAチームが3勝0敗となる確率を求めなさい。この問題は答えだけを書いてください。
(9) 5試合めまで終えた時点でAチームが3勝2敗となる確率を求めなさい。
この動画を見る 

福田の数学〜上智大学2021年TEAP利用文系第3問〜反復試行の確率と3次関数の極大値

アイキャッチ画像
単元: #数A#数Ⅱ#大学入試過去問(数学)#場合の数と確率#確率#指数関数と対数関数#微分法と積分法#指数関数#学校別大学入試過去問解説(数学)#上智大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{3}} 硬貨を2枚投げる試行を3回繰り返して、1回目、2回目、3回目に出た表の枚数\\
を順に\alpha,\beta,\gammaとする。3次関数\\
f(x)=(x-\alpha)(x-\beta)(x-\gamma)\\
を考える。\\
(1)関数y=f(x)が極値をとらない確率は\frac{\boxed{\ \ ト\ \ }}{\boxed{\ \ ナ\ \ }}である。\\
(2)関数y=f(x)が極大値をとるとき、その極大値の取り得る値のうち最小のもの\\
は\boxed{\ \ ニ\ \ }で、最大のものは\frac{\boxed{\ \ ヌ\ \ }}{\boxed{\ \ ネ\ \ }}である。\\
(3)関数y=f(x)が極大値\boxed{\ \ ニ\ \ }をとる確率は\frac{\boxed{\ \ ノ\ \ }}{\boxed{\ \ ハ\ \ }}である。\\
(4)関数y=f(x)が極大値\frac{\boxed{\ \ ヌ\ \ }}{\boxed{\ \ ネ\ \ }}を取る確率は\frac{\boxed{\ \ ヒ\ \ }}{\boxed{\ \ フ\ \ }}である。
\end{eqnarray}

2021上智大学文系過去問
この動画を見る 
PAGE TOP