#産業医科大学2024#区分級積法_41 - 質問解決D.B.(データベース)

#産業医科大学2024#区分級積法_41

問題文全文(内容文):
$\displaystyle \lim_{n\to\infty}\displaystyle \sum_{i=1}^{n} \dfrac{i\sqrt{i^2+n^2}}{n^3}$
を解け.

2022産業医科大学過去問題
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#平均変化率・極限・導関数#学校別大学入試過去問解説(数学)#数学(高校生)#産業医科大学
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \lim_{n\to\infty}\displaystyle \sum_{i=1}^{n} \dfrac{i\sqrt{i^2+n^2}}{n^3}$
を解け.

2022産業医科大学過去問題
投稿日:2024.09.07

<関連動画>

神戸大 3次方程式の基本問題

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#数と式#複素数と方程式#複素数平面#一次不等式(不等式・絶対値のある方程式・不等式)#複素数#剰余の定理・因数定理・組み立て除法と高次方程式#複素数平面#数学(高校生)#数C
指導講師: 鈴木貫太郎
問題文全文(内容文):
$a,b,c$は整数である。
$x^3+ax^2+bx+c=0$は$\alpha=\dfrac{3+\sqrt{7}i}{2}$と0以上1以下の解をもつ(a,b,c)をすべて求めよ.

神戸大過去問
この動画を見る 

「安定の良問」 by にっし~Diaryさん #極限

アイキャッチ画像
単元: #数Ⅱ#微分法と積分法#平均変化率・極限・導関数#関数と極限#数列の極限#関数の極限#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \lim_{ x \to \infty } \displaystyle \frac{x\{\sin(\displaystyle \frac{1}{x})-\sin(\sin(\displaystyle \frac{1}{x}))\}}{1-x\ \sin(\displaystyle \frac{1}{x})}$
この動画を見る 

重積分⑨-5【広義積分】(高専数学 微積II,数検1級1次解析対応)

アイキャッチ画像
単元: #数Ⅱ#数学検定・数学甲子園・数学オリンピック等#微分法と積分法#数学検定#数学検定1級#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
これを解け.
$\iint_D \ \dfrac{1}{\sqrt{x^2+y^2}}\ dx \ dy$
$D:0\leqq x\leqq y\leqq 1$
この動画を見る 

福田のおもしろ数学456〜5変数の連立方程式

アイキャッチ画像
単元: #連立方程式#数Ⅱ#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):

実数$x,y,z,w,t$に対して次の連立方程式を解け。

$\begin{eqnarray}
\left\{
\begin{array}{l}
\hspace{ 2pt } x^5=y+y^5= \cdots ① \\
\hspace{ 2pt }y^5=z+z^5=\cdots ② \\\
\hspace{ 0.1pt }z^5=w+w^5=\cdots ③ \\\
\hspace{ 0.2pt }w^5=t+t^5=\cdots ④ \\\
\hspace{ 1pt }t^5=x+x^5= \cdots ⑤
\end{array}
\right.
\end{eqnarray}$
    
この動画を見る 

弘前大(医)3次方程式の解

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$n$を自然数とする.
$x^3+3nx^2-(3n+2)=0$

(1)すべての自然数$n$において正の解はただ1つであることを示せ.
(2)正の解を$a_n$とする.$\displaystyle \lim_{n\to \infty} a_n$を求めよ.

弘前大(医)過去問
この動画を見る 
PAGE TOP