06神奈川県教員採用試験(数学:1番 数列の極限) - 質問解決D.B.(データベース)

06神奈川県教員採用試験(数学:1番 数列の極限)

問題文全文(内容文):
1⃣$a_1=1,\frac{(a_{n+1})^2}{a_n} = \frac{1}{e}$
$\displaystyle \lim_{ n \to \infty } a_n$を求めよ。
単元: #関数と極限#数列の極限#その他#数学(高校生)#数Ⅲ#教員採用試験
指導講師: ますただ
問題文全文(内容文):
1⃣$a_1=1,\frac{(a_{n+1})^2}{a_n} = \frac{1}{e}$
$\displaystyle \lim_{ n \to \infty } a_n$を求めよ。
投稿日:2020.11.28

<関連動画>

難易度バリ高の極限 by 餃子n人前さん ※作成者の解答を参考に動画を作成しています。

アイキャッチ画像
単元: #関数と極限#数列の極限#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$a_1=1,$ $a_{n+1}+a_n=\displaystyle \frac{1}{n}$のとき、
$\displaystyle \lim_{ n \to \infty } |na_n|$を求めよ
この動画を見る 

福田の数学〜千葉大学2023年第4問〜関数の増減と極限

アイキャッチ画像
単元: #大学入試過去問(数学)#関数と極限#微分とその応用#関数の極限#微分法#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#千葉大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{4}$ 2つの実数$a$,$b$は0<$b$<$a$を満たすとする。関数
$f(x)$=$\displaystyle\frac{1}{b}\left(e^{-(a-b)x}-e^{-ax}\right)$
の最大値を$M(a,b)$、最大値をとるときの$x$の値を$X(a,b)$と表す。ここで、$e$は自然対数の底である。
(1)$X(a,b)$を求めよ。
(2)極限$\displaystyle\lim_{b \to +0}X(a,b)$ を求めよ。
(3)極限$\displaystyle\lim_{b \to +0}M(a,b)$ を求めよ。
この動画を見る 

福田の数学〜千葉大学2024年理系第8問〜4つの円の位置関係と極限

アイキャッチ画像
単元: #数A#図形の性質#関数と極限#数列の極限#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
図は動画参照

半径$1$、中心$O$の円$C$がある。2つの円$C_1$と$C_2$が次の2つの条件を満たすとする。

・$C_1$と$C_2$はどちらも$C$に内接する。
・$C_1$と$C_2$は互いに外接する。

円$C_1,\ C_2$の中心をそれぞれ$D,\ E$とし、半径をそれぞれ$p,\ q$とする。$\theta= \angle{DOE}$とおく。

(1) $q$を$p$と$\theta$を用いて表せ。

(2) $p$を固定する。$\theta$が$0$に近づくとき、$\dfrac{q}{theta^2}$の極限値を求めよ。

(3) $p= \sqrt{2}-1$のとき、$q$の値を求めよ。

(4) $\theta$が$0$に近づくとき、$\dfrac{q}{p}$の極限値を求めよ。
この動画を見る 

17滋賀県教員採用試験 3番 極限について

アイキャッチ画像
単元: #関数と極限#数列の極限#関数の極限#その他#数学(高校生)#数Ⅲ#教員採用試験
指導講師: ますただ
問題文全文(内容文):
$\boxed{3}$
$\sqrt{\sqrt{3+{\sqrt{3+{\sqrt3+・・・}}}}}$の値を求めよ.
この動画を見る 

【何かを理解!!】極限を解説!

アイキャッチ画像
単元: #関数と極限#関数の極限#数学(高校生)#数Ⅲ
指導講師: 3rd School
問題文全文(内容文):
極限について解説します。
この動画を見る 
PAGE TOP