福田のおもしろ数学554〜nのn乗根の最大と最小 - 質問解決D.B.(データベース)

福田のおもしろ数学554〜nのn乗根の最大と最小

問題文全文(内容文):

$a_1=1,a_n=\sqrt[n]{n} \quad (n\geqq 2)$

で定める数列$\{a_n\}$について

(1)$n\geqq 3$のとき$\dfrac{a_{n+1}}{a_n} \lt 1$を示せ。

(2)この数列の最大の項と

最小の項を求めよ。
     
単元: #数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):

$a_1=1,a_n=\sqrt[n]{n} \quad (n\geqq 2)$

で定める数列$\{a_n\}$について

(1)$n\geqq 3$のとき$\dfrac{a_{n+1}}{a_n} \lt 1$を示せ。

(2)この数列の最大の項と

最小の項を求めよ。
     
投稿日:2025.07.09

<関連動画>

防衛大 漸化式 Japanese university entrance exam questions

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#防衛大学校#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
防衛大学過去問題
$a_1=1 \quad a_{n+1}=2^{2n-2}(a_n)^2$
n自然数、一般項を求めよ。
この動画を見る 

福田の数学〜無限級数の和は部分和の極限〜明治大学2023年全学部統一Ⅲ第1問(1)〜無限級数の和

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#数列とその和(等差・等比・階差・Σ)#関数と極限#数列の極限#学校別大学入試過去問解説(数学)#明治大学#数学(高校生)#数B#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
無限級数

$\displaystyle \sum_{n=1}^{\infty} \log \frac{(n+1)(n+2)}{n(n+3)}$

の和を求めよ。

2023明治大学過去問
この動画を見る 

2024年共通テスト徹底解説〜数学ⅡB第4問数列〜福田の入試問題解説

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#数列とその和(等差・等比・階差・Σ)#センター試験・共通テスト関連#共通テスト#数学(高校生)#大学入試解答速報#数学#共通テスト#数B
指導講師: 福田次郎
問題文全文(内容文):
共通テスト2024の数学ⅡB第4問数列を徹底解説します

2024共通テスト過去問
この動画を見る 

【数B】【数列】初項a、公差dである等差数列の初項から第n項までの和をSnとする。m≠nであって、Sm=Snならば、Sn+m=0であることを証明せよ。

アイキャッチ画像
単元: #数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
教材: #4S数学#4S数学Ⅱ+BのB問題解説(新課程2022年以降)#中高教材#数列
指導講師: 理数個別チャンネル
問題文全文(内容文):
初項a、公差dである等差数列の初項から第n項までの和をSnとする。m≠nであって、$S_m=S_n$ならば、$S_{n+m}$=0であることを証明せよ。
この動画を見る 

14和歌山県教員採用試験(数学:4番 数列)

アイキャッチ画像
単元: #数列#数列とその和(等差・等比・階差・Σ)#その他#数学(高校生)#数B#教員採用試験
指導講師: ますただ
問題文全文(内容文):
$\boxed{4}$
$a_1=5,a_{n+1}=\dfrac{5a_n+6}{a_4+4}$とする.

(1)$b_n=\dfrac{a_n+\beta}{a_n+\alpha}\ (\alpha \gt \beta)$
$b_n$が等比数列となるような$\alpha,\beta$の値を求めよ.

(2)$a_n$を求めよ.
この動画を見る 
PAGE TOP