【数Ⅱ】【微分法と積分法】定積分と恒等式2 ※問題文は概要欄 - 質問解決D.B.(データベース)

【数Ⅱ】【微分法と積分法】定積分と恒等式2 ※問題文は概要欄

問題文全文(内容文):
次の2つの条件を同時に満たす
$x$ の3次の多項式 $P(x)$ を求めよ。

[1] 任意の2次以下の多項式 $Q(x)$ に対して
$
\int_{-1}^{1} P(x) Q(x) \,dx = 0
$
[2] $P(1) = 1$
チャプター:

0:00 オープニング
0:05 問題文
0:24 解説
5:02 エンディング

単元: #数Ⅱ#微分法と積分法#不定積分・定積分#数学(高校生)
教材: #4S数学#4S数学Ⅱ+BのB問題解説(新課程2022年以降)#微分法と積分法#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
次の2つの条件を同時に満たす
$x$ の3次の多項式 $P(x)$ を求めよ。

[1] 任意の2次以下の多項式 $Q(x)$ に対して
$
\int_{-1}^{1} P(x) Q(x) \,dx = 0
$
[2] $P(1) = 1$
投稿日:2025.03.20

<関連動画>

大学入試問題#626「一直線だが、最後まで気を抜かない」 横浜市立大学医学部(2007)

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#積分とその応用#不定積分#定積分#学校別大学入試過去問解説(数学)#不定積分・定積分#数学(高校生)#数Ⅲ#横浜市立大学
指導講師: ますただ
問題文全文(内容文):
$n$:自然数
$\displaystyle \int_{0}^{\frac{\pi}{2}} \sin\{(2n+1)\theta\}\cos\theta d\theta$

出典:2007年横浜市立大学 入試問題
この動画を見る 

【短時間でポイントチェック!!】定積分 面積② 直線と曲線で囲まれた面積〔現役講師解説、数学〕

アイキャッチ画像
単元: #数Ⅱ#微分法と積分法#不定積分・定積分#面積、体積#数学(高校生)
指導講師: 3rd School
問題文全文(内容文):
$y=x^2-x-4,y=x-1$で囲まれた部分の面積
この動画を見る 

【高校数学】毎日積分76日目~47都道府県制覇への道~【⑲大阪】【毎日17時投稿】

アイキャッチ画像
単元: #数Ⅱ#微分法と積分法#不定積分・定積分#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
■【大阪大学 2023】
$n$を2以上の自然数とする。
(1)$0\leqq x\leqq 1$の時、次の不等式が成り立つことを示せ。
$\dfrac{1}{2}x^n\leqq (-1)^n\left[\dfrac{1}{x+1}-1-\displaystyle \sum_{k=2}^n(-1)^{k-1}\right]\leqq x^n-\dfrac{1}{2}x^{n+1}$
(2)$a_n=\displaystyle \sum_{k=1}^n\dfrac{(-1)^{k-1}}{k}$とするとき、次の極限値を求めよ。
$\lim_{n\to\infty}(-1)^n n(a_n-\log 2)$
この動画を見る 

06和歌山県教員採用試験(数学:3番 定積分の応用)

アイキャッチ画像
単元: #数Ⅱ#微分法と積分法#不定積分・定積分#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
$f(t)=\displaystyle \int_{0}^{1}|x^2-tx|dx$の最小値を求めよ。

出典:和歌山県教員採用試験
この動画を見る 

埼玉大 微分・積分 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#平均変化率・極限・導関数#学校別大学入試過去問解説(数学)#不定積分・定積分#数学(高校生)#埼玉大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
$f(x)=x^4-9x^2$
$f(x)$の接線で$(3,0)$を通り、接点の$x$座標が負のものを$y=ax+b$
接点の$x$座標を$p$とする。
$\displaystyle \int_{p}^{ 3 }|f(x)-(ax+b)|dx$の値

出典:2008年埼玉大学 過去問
この動画を見る 
PAGE TOP