福田の数学〜名古屋大学2022年理系第1問〜割り算の余りと異なる実数解の個数 - 質問解決D.B.(データベース)

福田の数学〜名古屋大学2022年理系第1問〜割り算の余りと異なる実数解の個数

問題文全文(内容文):
a,bを実数とする。                        
(1)整式x3を2次式(xa)2で割った時の余りを求めよ。
(2)実数を係数とする2次式f(x)=x2+αx+βで整式x3を割った時の余りが
3x+bとする。bの値に応じて、このようなf(x)が何個あるかを求めよ。

2022名古屋大学理系過去問
単元: #数A#数Ⅱ#大学入試過去問(数学)#複素数と方程式#整数の性質#約数・倍数・整数の割り算と余り・合同式#剰余の定理・因数定理・組み立て除法と高次方程式#学校別大学入試過去問解説(数学)#数学(高校生)#名古屋大学
指導講師: 福田次郎
問題文全文(内容文):
a,bを実数とする。                        
(1)整式x3を2次式(xa)2で割った時の余りを求めよ。
(2)実数を係数とする2次式f(x)=x2+αx+βで整式x3を割った時の余りが
3x+bとする。bの値に応じて、このようなf(x)が何個あるかを求めよ。

2022名古屋大学理系過去問
投稿日:2022.04.06

<関連動画>

整数問題 合同式

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
7m1032=n2,自然数(m,n)をすべて求めよ.
この動画を見る 

京都大 4次方程式 整数問題 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #数A#数Ⅱ#大学入試過去問(数学)#複素数と方程式#整数の性質#約数・倍数・整数の割り算と余り・合同式#剰余の定理・因数定理・組み立て除法と高次方程式#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
整数係数の4次方程式
x4+ax3+bx2+cx+1=0
重複も込めた4つの解は、整数2つ虚数2つである。
a,b,cの値を求めよ

出典:2002年京都大学 過去問
この動画を見る 

素数を求めよ お茶の水女子大付属

アイキャッチ画像
単元: #数学(中学生)#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#高校入試過去問(数学)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
123123のように3ケタの同じ整数を2つ並べて6ケタの整数を作るとある素数で必ず割り切れる。
この素数をすべて求めよ。

お茶の水女子大学附属高等学校
この動画を見る 

19大阪府教員採用試験(数学:2番 フェルマーの小定理)

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
2⃣ ℙ:素数、(a,ℙ)=1
(1)a,2a,3a,,(1)aの余りは全て異なる
(2)a1はℙの倍数
(3)20181800を181で割った余り
この動画を見る 

高校への数学執筆者 秋田洋和先生が解説!!(岡山県)

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
「3ケタの正の整数で、百の位を2倍した数と下2ケタの数との和が7の倍数ならば、もとの整数は7の倍数である」なぜ?
百の位をa,十の位をb、一の位をcとする。

岡山県
この動画を見る 
PAGE TOP preload imagepreload image