東大の整数問題【数学 入試問題】【東京大学】 - 質問解決D.B.(データベース)

東大の整数問題【数学 入試問題】【東京大学】

問題文全文(内容文):
$3$以上$9999$以下の奇数$a$で、$a^2-a$が$10000$で割り切れるものをすべて求めよ。

東大過去問
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
$3$以上$9999$以下の奇数$a$で、$a^2-a$が$10000$で割り切れるものをすべて求めよ。

東大過去問
投稿日:2022.05.16

<関連動画>

福田の数学〜大阪大学2024年理系第5問〜互いに素な整数の個数

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{5}$ 自然数1, 2, 3, ..., $n$のうち、$n$と互いに素であるものの個数を$f(n)$とする。
(1)自然数$a$, $b$, $c$及び相異なる素数$p$, $q$, $r$に対して、等式
$f(p^ap^bp^c)$=$p^{a-1}p^{b-1}p^{c-1}(p-1)(q-1)(r-1)$
が成り立つことを示せ。
(2)$f(n)$が$n$の約数となる5以上100以下の自然数$n$をすべて求めよ。
この動画を見る 

合同式 数学的帰納法 東工大

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数列#数学的帰納法#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
$n$は自然数である.
$79^n+(-1)^n.2^{6n-5}$は必ずある自然数であるとき,$m$の倍数と最大値を求めよ.

東工大過去問
この動画を見る 

ピタゴラス数、三平方の定理、整数解の求め方、質問への返答

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
ピタゴラス数,三平方の定理,整数解の求め方,質問への回答に関して解説していきます.
この動画を見る 

信州大学 整数問題 Japanese university entrance exam questions

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#数学(高校生)#信州大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
大阪教育大学過去問題
(1)ωを方程式$x^2+x+1=0$の解を1つとする。$(ω+1)^{12}$の値を求めよ。

(2)$(x+1)^{12}$を$x^3-1$で割った余りを求めよ。
この動画を見る 

高校入試では珍しい問題 巣鴨高校

アイキャッチ画像
単元: #数学(中学生)#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#高校入試過去問(数学)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
a,bを整数とする。
$\sqrt 2 (a+b+1) = a-b-5$を満たすときa,bの値を求めよ。

巣鴨高等学校
この動画を見る 
PAGE TOP