数学「大学入試良問集」【19−24 空間図形の断面積と体積】を宇宙一わかりやすく - 質問解決D.B.(データベース)

数学「大学入試良問集」【19−24 空間図形の断面積と体積】を宇宙一わかりやすく

問題文全文(内容文):
$xyz$空間の$xy$平面上に曲線$C:y=x^2,z=0$ 直線$l:y=x+a,z=0(a \leqq 1)$がある。
いま$C$と$l$の交点を$P,Q$とし、線分$PQ$を底辺とする正三角形$PQR$を$xy$平面に垂直に作る。
直線$l$を$a=1$から$C$に接するまで動かすとき、この三角形が通過してできる立体の体積$V$を求めよ。
単元: #大学入試過去問(数学)#積分とその応用#面積・体積・長さ・速度#学校別大学入試過去問解説(数学)#数学(高校生)#奈良教育大学#数Ⅲ
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
$xyz$空間の$xy$平面上に曲線$C:y=x^2,z=0$ 直線$l:y=x+a,z=0(a \leqq 1)$がある。
いま$C$と$l$の交点を$P,Q$とし、線分$PQ$を底辺とする正三角形$PQR$を$xy$平面に垂直に作る。
直線$l$を$a=1$から$C$に接するまで動かすとき、この三角形が通過してできる立体の体積$V$を求めよ。
投稿日:2021.09.27

<関連動画>

福田の数学〜東京医科歯科大学2022年理系第2問〜放物線に反射する直線の方程式と面積

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#図形と方程式#三角関数#微分法と積分法#点と直線#円と方程式#微分とその応用#積分とその応用#接線と法線・平均値の定理#定積分#面積・体積・長さ・速度#学校別大学入試過去問解説(数学)#面積、体積#数学(高校生)#数Ⅲ#東京医科歯科大学
指導講師: 福田次郎
問題文全文(内容文):
$xy$平面上の放物線$P:y^2=4x$上に異なる2点A,Bをとり、A,Bそれぞれに
おいてPへの接線と直交する直線を$n_A,\ n_B$とする。aを正の数として、点Aの座標
を$(a,\ \sqrt{4a})$とするとき、以下の各問いに答えよ。
(1)$\ n_A$の方程式を求めよ。
(2)直線ABと直線$y=\sqrt{4a}$とがなす角の2等分線の一つが、$n_A$に一致する
とき、直線ABの方程式をaを用いて表せ。
(3)(2)のとき、点Bを通る直線$r_B$を考える。$r_B$と直線ABとがなす角の
2等分線の一つが、$n_B$に一致するとき、$r_B$の方程式をaを用いて表せ。
(4)(3)のとき、直線ABと放物線Pで囲まれた図形の面積をS_1とし、Pと直線\\
$y=\sqrt{4a}$、直線$x=-1$および(3)の$r_B$で囲まれた図形の面積を$S_2$とする。
aを変化させたとき、$\frac{S_1}{S_2}$の最大値を求めよ。

2022東京医科歯科大学理系過去問
この動画を見る 

大学入試問題#340「とりあえず絶対値はずそ」 日本大学医学部(2010) #定積分

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#日本大学#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{\frac{\pi}{6}}^{\frac{4}{3}\pi} |\sqrt{ 3 }\cos\ x-\sin\ x| dx$

出典:2010年日本大学医学部 入試問題
この動画を見る 

大学入試問題#550「これは難しい!!!」 By にっし~Diaryさん #定積分

アイキャッチ画像
単元: #積分とその応用#定積分#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{\frac{\pi}{4}}^{\frac{\pi}{2}} \displaystyle \frac{x^2}{(\sin\ x-x\ \cos\ x)^2} dx$
この動画を見る 

大学入試問題#184 早稲田大学 定積分

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{4}^{16}\sqrt{ x }\ e^{-\sqrt{ x }}dx$を計算せよ

出典:早稲田大学 入試問題
この動画を見る 

大学入試問題#585「気付けば暗算」 同志社大学(2004) #極限

アイキャッチ画像
単元: #大学入試過去問(数学)#関数と極限#積分とその応用#関数の極限#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ#同志社大学
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \lim_{ n \to \infty } \{\sqrt{ n }\sin(\displaystyle \frac{1}{n})\}\displaystyle \sum_{k=1}^n \displaystyle \frac{1}{\sqrt{ n+k }}$

出典:2004年同志社大学 入試問題
この動画を見る 
PAGE TOP