福田の入試問題解説〜東京大学2022年理系第2問〜約数と倍数と最大公約数 - 質問解決D.B.(データベース)

福田の入試問題解説〜東京大学2022年理系第2問〜約数と倍数と最大公約数

問題文全文(内容文):
数列$\left\{a_n\right\}$を次のように定める。
$a_1=1,  a_{n+1}=a_n^2+1  (n=1,2,3,\ldots)$
(1)正の整数nが3の倍数のとき、$a_n$は5の倍数となることを示せ。
(2)k,nを正の整数とする。$a_n$が$a_k$の倍数となるための必要十分条件をk,nを
用いて表せ。
(3)$a_{2022}$と$(a_{8091})^2$の最大公約数を求めよ。

2022東京大学理系過去問
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
数列$\left\{a_n\right\}$を次のように定める。
$a_1=1,  a_{n+1}=a_n^2+1  (n=1,2,3,\ldots)$
(1)正の整数nが3の倍数のとき、$a_n$は5の倍数となることを示せ。
(2)k,nを正の整数とする。$a_n$が$a_k$の倍数となるための必要十分条件をk,nを
用いて表せ。
(3)$a_{2022}$と$(a_{8091})^2$の最大公約数を求めよ。

2022東京大学理系過去問
投稿日:2022.02.26

<関連動画>

慶應義塾大 整数問題 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$x,y$自然数
$x^2+5y^2=2016$

出典:慶應義塾 過去問
この動画を見る 

2022灘中 整数問題

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$A=?$
$\dfrac{A}{2^a}-\dfrac{B}{3^b}-\dfrac{1}{5^4}=\dfrac{337}{2^a・3^b・5^4}$
$1\leqq B\leqq 9,2\leqq a,b\leqq5$

灘中過去問
この動画を見る 

中学生も解ける?整数問題

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
$P=a^2-a+2ab+b^2-b$ (a,bは自然数)
Pが素数となるようなa,bをすべて求めよ。(鹿児島大学)
この動画を見る 

図形問題にみえて実は〇〇問題 慶應義塾高校

アイキャッチ画像
単元: #数Ⅰ#数A#図形と計量#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
nは3以上の整数とする。
正n角形の1つの内角をx°とするときxの値が整数となる正n角形は何個?

慶應義塾高等学校
この動画を見る 

2次方程式の解を四捨五入!?あまり見かけない問題。解ける? #Shorts #ずんだもん #勉強 #数学

アイキャッチ画像
単元: #数Ⅰ#数A#大学入試過去問(数学)#2次関数#2次方程式と2次不等式#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#一橋大学#数学(高校生)
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
m,nを正の整数とする。xについての2次方程式 12x^2-mx+n=0 の2つの実数解を小数第2位で四捨五入して0.3および0.7を得た。m,nを求めよ。
この動画を見る 
PAGE TOP