【高校数学】 数Ⅱ-77 軌跡と方程式③ - 質問解決D.B.(データベース)

【高校数学】 数Ⅱ-77 軌跡と方程式③

問題文全文(内容文):
①点Qが直線$2x-y+5=0$上を動くとき、原点Oと点Qを結ぶ線分OQを 2:1に内分する点Pの軌跡を求めよう。
単元: #数Ⅱ#図形と方程式#軌跡と領域#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
①点Qが直線$2x-y+5=0$上を動くとき、原点Oと点Qを結ぶ線分OQを 2:1に内分する点Pの軌跡を求めよう。
投稿日:2015.07.12

<関連動画>

どっちがでかい?

アイキャッチ画像
単元: #数Ⅱ#指数関数と対数関数#指数関数#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
どちらが大きいか?

$2^{3^{100}}$ VS $3^{2^{150}}$
この動画を見る 

福田の数学〜慶應義塾大学2022年商学部第1問(2)〜三角不等式の一般解

アイキャッチ画像
単元: #大学入試過去問(数学)#三角関数#三角関数とグラフ#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$(2)xを変数とする2次方程式$x^2+(2\sqrt2\cos\theta)x+\sqrt2\sin\theta=0$が
異なる2つの実数解をもつような実数$\theta$の範囲は$\boxed{\ \ ア\ \ }$である。

2022慶應義塾大学商学部過去問
この動画を見る 

【数Ⅱ】【複素数と方程式】複素数基本 ※問題文は概要欄

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#複素数#数学(高校生)
教材: #4S数学#4S数学Ⅱ+BのB問題解説(新課程2022年以降)#複素数と方程式#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):

(1)$\left({\displaystyle \frac{3-2i}{2+3i}}\right)^2$

(2)$\left({\displaystyle \frac{-1+\sqrt{3}i}{2}}\right)^2$

(3)$(2+i)^3+(2-i)^3$

(4)$\left(\displaystyle \frac{1}{i}-i\right)\left(\displaystyle \frac{2}{i}+i\right)i^3$

(5)$\displaystyle \frac{2+3i}{3-2i}+\displaystyle \frac{2-3i}{3+2i}$

(6)$\displaystyle \frac{1}{i}+1-i+i²-i³+i⁴$


$x=\displaystyle \frac{-1+\sqrt{5}i}{2}$,$y=\displaystyle \frac{-1-\sqrt{5}i}{2}$であるとき、次の式の値を求めよ。

(1)$x+y$
(2)$xy$
(3)$x^2+y^2$
(4)$x^3+y^3+x^2y+xy^2$

次の等式を満たす実数x,yの値を求めよ。
(1)$(2i+3)x+(2-3i)y=5-i$
(2)$(1-2i)(x+yi)=2+6i$
(3)$(1+xi)^2+(x+i)^2=0$

(4)$\displaystyle \frac{1}{2+i}+\displaystyle \frac{1}{x+yi}=\displaystyle \frac{1}{2}$


この動画を見る 

【数Ⅱ】【微分法と積分法】1/6公式の利用 ※問題文は概要欄

アイキャッチ画像
単元: #数Ⅱ#微分法と積分法#不定積分・定積分#数学(高校生)
教材: #4S数学#4S数学Ⅱ+BのB問題解説(新課程2022年以降)#微分法と積分法#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
$\int_{α}^β(x-α)(x-β)dx=-\dfrac{1}{6}(β-α)³$

を用いて、次の定積分を求めよ。
(1)$\int_{-1}^2(x²-x-2)dx$
(2)$\int_{1-\sqrt 2}^{1+\sqrt2}(x²-2x-1)dx$
(3)$\int_{3}^4(14x-24-2x²)dx $
この動画を見る 

大学入試問題#6 学習院大学(2021) 対数

アイキャッチ画像
単元: #数Ⅱ#指数関数と対数関数#対数関数#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
$log_2(log_2(x-2)-log_{\frac{1}{2}}(x-4))=2$を解け。

出典:2021年学習院大学 入試問題
この動画を見る 
PAGE TOP