福田の数学〜大阪大学2024年理系第3問〜ねじれの位置にある2直線に直交する直線が1本しかない証明 - 質問解決D.B.(データベース)

福田の数学〜大阪大学2024年理系第3問〜ねじれの位置にある2直線に直交する直線が1本しかない証明

問題文全文(内容文):
$\Large\boxed{3}$ 空間内の2直線$l$, $m$はねじれの位置にあるとする。$l$と$m$の両方に直交する直線がただ1つ存在することを示せ。
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#大阪大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{3}$ 空間内の2直線$l$, $m$はねじれの位置にあるとする。$l$と$m$の両方に直交する直線がただ1つ存在することを示せ。
投稿日:2024.06.02

<関連動画>

大学入試問題#158 名古屋市立大学(2020) 2項展開の応用

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#式と証明#整式の除法・分数式・二項定理#学校別大学入試過去問解説(数学)#数学(高校生)#名古屋市立大学
指導講師: ますただ
問題文全文(内容文):
$(x+2y)^2(x+2y+3z)^4$を展開した時
$x^4y^2,x^3y^2z$の係数をそれぞれ求めよ。

出典:2020年名古屋市立大学 入試問題
この動画を見る 

福田の数学〜東北大学2025理系第4問〜2曲線の相接と面積の極限

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#平均変化率・極限・導関数#関数と極限#関数の極限#学校別大学入試過去問解説(数学)#東北大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):

$\boxed{4}$

$n$を正の整数、$a$を正の実数とし、

関数$f(x)$と$g(x)$を次のように定める。

$f(x)=n\log x,\quad g(x)=ax^n$

また、曲線$y=f(x)$と曲線$y=g(x)$が共有点をもち、

その共有点における

$2$つの曲線の接線が一致しているとする。

このとき、以下の問いに答えよ。

(1)$a$の値を求めよ。

(2)この$2$つの曲線と$x$軸で囲まれた部分の面積

$S_n$を求めよ。

(3)$\quad $(2)で求めた$S_n$に対し、極限$\displaystyle \lim_{n\to\infty}S_n$を求めよ。

$2025$年東北大学理系過去問題
この動画を見る 

福田の数学〜九州大学2023年理系第1問〜複素数平面上の三角形の形状

アイキャッチ画像
単元: #大学入試過去問(数学)#複素数平面#複素数平面#学校別大学入試過去問解説(数学)#数学(高校生)#九州大学#数C
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{1}$ 以下の問いに答えよ。
(1)4次方程式$x^4$-2$x^3$+3$x^2$-2$x$+1=0 を解け。
(2)複素数平面上の$\triangle$ABCの頂点を表す複素数をそれぞれ$\alpha$, $\beta$, $\gamma$とする。
$(\alpha-\beta)^4$+$(\beta-\gamma)^4$+$(\gamma-\alpha)^4=0$
が成り立つとき、$\triangle$ABCはどのような三角形になるか答えよ。

2023九州大学理系過去問
この動画を見る 

#小樽商科大学#不定積分#ますただ

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#積分とその応用#不定積分#学校別大学入試過去問解説(数学)#不定積分・定積分#数学(高校生)#数Ⅲ#小樽商科大学
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int \displaystyle \frac{x}{\sqrt{ 2x+2}-\sqrt{ 2 }}$ $dx$

出典:小樽商科大学
この動画を見る 

大学入試問題#151 東北大学2020 定積分

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#東北大学#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{1}\displaystyle \frac{dx}{(1+x^2)^3}$を計算せよ。

出典:2020年東北大学 入試問題
この動画を見る 
PAGE TOP