【数C】【ベクトルの内積】a,bはベクトルを表す。a≠0,b≠0とする。(1) |a+tb|を最小にする実数tの値t_0と,その時の最小値mを,|a|,|b|,a・bを用いて表せ。他1題 - 質問解決D.B.(データベース)

【数C】【ベクトルの内積】a,bはベクトルを表す。a≠0,b≠0とする。(1) |a+tb|を最小にする実数tの値t_0と,その時の最小値mを,|a|,|b|,a・bを用いて表せ。他1題

問題文全文(内容文):
$\vec{a} \ne \vec{0}, \vec{b} \ne \vec{0}$ とする。
(1) $|\vec{a} + t \vec{b}|$ を最小にする実数 $t$ の値 $t_0$ と、
そのときの最小値 $m$ を、$|\vec{a}| , |\vec{b}| , \vec{a} + \vec{b}$ を用いて表せ。
(2) 更に、$\vec{a}$ と $\vec{b}$ が平行でないとき、
$\vec{a} + t_0 \vec{b}$ と $\vec{b}$ は垂直であることを示せ。
チャプター:

0:00 オープニング、問題概要
0:40 そのまま平方完成
1:43 ②の解説
2:27 条件の考え方と記述における注意点

単元: #平面上のベクトル#平面上のベクトルと内積#数学(高校生)#数C
教材: #4S数学#中高教材#4S数学CのB問題解説#平面上のベクトル
指導講師: 理数個別チャンネル
問題文全文(内容文):
$\vec{a} \ne \vec{0}, \vec{b} \ne \vec{0}$ とする。
(1) $|\vec{a} + t \vec{b}|$ を最小にする実数 $t$ の値 $t_0$ と、
そのときの最小値 $m$ を、$|\vec{a}| , |\vec{b}| , \vec{a} + \vec{b}$ を用いて表せ。
(2) 更に、$\vec{a}$ と $\vec{b}$ が平行でないとき、
$\vec{a} + t_0 \vec{b}$ と $\vec{b}$ は垂直であることを示せ。
投稿日:2025.06.28

<関連動画>

【数学B/平面ベクトル】点Pの存在範囲(1)

アイキャッチ画像
単元: #平面上のベクトル#ベクトルと平面図形、ベクトル方程式#数学(高校生)#数C
指導講師: 【ゼロから理解できる】高校数学・物理
問題文全文(内容文):
$\triangle OAB$に対して、点$P$が次の条件を満たしながら動くとき、点$P$の存在範囲を図示せよ。
$\overrightarrow{ OP }=s\overrightarrow{ OA }+t\overrightarrow{ OB },$ $1 \leqq s \leqq 2,$ $0 \leqq t \leqq 1$
この動画を見る 

共通テストでめちゃ使えるベクトルの裏技(s, t問題)(公式)

アイキャッチ画像
単元: #大学入試過去問(数学)#平面上のベクトル#ベクトルと平面図形、ベクトル方程式#センター試験・共通テスト関連#共通テスト#数学(高校生)#数C
指導講師: カサニマロ【べんとう・ふきのとうの授業動画】
問題文全文(内容文):
共通テストで使えるベクトルの裏技説明動画です(s, t問題)
この動画を見る 

【数C】【ベクトルの内積】a = √2, b = √5, a・b = -1のとき、 a+2bとa-bのなす角を求めよ。

アイキャッチ画像
単元: #平面上のベクトル#平面上のベクトルと内積#数学(高校生)#数C
教材: #4S数学#中高教材#4S数学CのB問題解説#平面上のベクトル
指導講師: 理数個別チャンネル
問題文全文(内容文):
$|\vec{a}|=\sqrt{2}, |\vec{b}|=\sqrt{5}, \vec{a}\cdot\vec{b}=-1$のとき,
$\vec{a}+2\vec{b}$と$\vec{a}-\vec{b}$のなす角$\theta$を求めよ。
この動画を見る 

福田の数学〜明治大学2024全学部統一IⅡAB第3問〜変わった規則の数列と点列と面積

アイキャッチ画像
単元: #大学入試過去問(数学)#平面上のベクトル#複素数平面#数列#平面上のベクトルと内積#漸化式#複素数平面#学校別大学入試過去問解説(数学)#明治大学#数学(高校生)#数B#数C
指導講師: 福田次郎
問題文全文(内容文):
$\displaystyle
\fcolorbox{#000}{ #fff }{3}
整数からなる数列\{a_n\} \ (n=1,2,3,...)を次の規則1、2により定める。
$

$\displaystyle
(規則1)a_1=0 , \ a_2=1である。
$

$
\displaystyle(規則2)k=1,2,3,...について、初項から第2^{k+1}項までに値のそれぞれに1を加え、\\ それらすべてを逆の順序にしたものが第2^k+1項から第2^{k+1}項までの値と定める。
$

$\displaystyle
(1)以上の規則により得られる数列\{ a_n \}において、a_{10}=\fcolorbox{#000}{ #fff }{$ア \ \ \ $}であり、a_{16}=\fcolorbox{#000}{ #fff }{$イ \ \ \ $}である。 \\
また第2^k項(k=5,6,7,...)の値は\fcolorbox{#000}{ #fff }{$ウ \ \ \ $}である。
$

$\displaystyle
(2)a_{518}を求めたい。上記の規則2によれば、1 \leqq i \leqq 2^kを満たすiに対して、 \\
a_iに1を加えた数と第
\fcolorbox{#000}{ #fff }{$エ \ \ \ $}
項が、等しいと定めている。 \\
実際に、2^b < 518 \leqq 2^{b+1}を満たすような整数bは
\fcolorbox{#000}{ #fff }{$オ \ \ \ $}
であることに注意すれば、a_{518}=
\fcolorbox{#000}{ #fff }{$カ \ \ \ $}
である。
$

$\displaystyle
(3)点O_k(k=1,2,3,...)を次のように定める。\\
数列 \{ a_n \}の初項から第2^k項に着目し、a_nを4で割った余りにしたがって、ベクトル\vec{e_n}を
$

$
\vec{e_n}=
\left\{
\begin{array}{l}
(1,0) \quad a_nが4の倍数のとき \\
(0,1) \quad a_nを4で割った余りが1のとき \\
(-1,0) \quad a_nが4で割った余りが2のとき \\
(0,-1) \quad a_nを4で割った余りが3のとき
\end{array}
\right.
$

$
\displaystyle
によって定め、\\
点P_1の位置ベクトルを\overrightarrow{OP_1}=\vec{e_1}+\vec{e_2}とし、\\
点P_k(k=2,3,4,...)の位置ベクトルを\\
\overrightarrow{OP_k}=\vec{e_1}+\vec{e_2}+\vec{e_3}+...+\vec{e_{2^k}}とする。\\
たとえば、 \\
\overrightarrow{OP_w}=(1,0)+(0,1)+(-1,0)+(0,1)=(0,2)である。\\
\{a_n\}を定める規則に注目すると、 \\
\overrightarrow{OP_{k+1}} は \overrightarrow{OP_k} の\fcolorbox{#000}{ #fff }{$キ \ \ \ $}倍であり、\\
\angle P_kOP_{k+1}=\fcolorbox{#000}{ #fff }{$ク \ \ \ $}である。\\
このことから\\
\overrightarrow{OP_{99}}=(\fcolorbox{#000}{ #fff }{$ケ \ \ \ $},\fcolorbox{#000}{ #fff }{$コ \ \ \ $})である。
$
この動画を見る 

【数C】ベクトル:2021年高3第1回駿台全国模試 (文系)

アイキャッチ画像
単元: #大学入試過去問(数学)#平面上のベクトル#平面上のベクトルと内積#数学(高校生)#駿台模試#数C
指導講師: 理数個別チャンネル
問題文全文(内容文):
三角形OABがあり、OA=1、OB=2、∠AOB=θ(0<θ<π)であるとする。
∠AOBの二等分線と 辺ABの交点をCとするとき、直線OC上の点Pは (a・p)²-2(b・p)+4=0 を満たすと する。
ただし、a=OA、b=OB、p=OPとする。次の問に答えよ。

(1)OCをa,bで表せ。
(2)pをa,b,θで表せ。
(3)b・pの値を求めよ。
(4)Pから直線OAに下ろした垂線と直 線OAとの交点をHとするとき、OH・p=b・pであることを示せ。
この動画を見る 
PAGE TOP