【数C】【ベクトルの内積】a,bはベクトルを表す。a≠0,b≠0とする。(1) |a+tb|を最小にする実数tの値t_0と,その時の最小値mを,|a|,|b|,a・bを用いて表せ。他1題 - 質問解決D.B.(データベース)

【数C】【ベクトルの内積】a,bはベクトルを表す。a≠0,b≠0とする。(1) |a+tb|を最小にする実数tの値t_0と,その時の最小値mを,|a|,|b|,a・bを用いて表せ。他1題

問題文全文(内容文):
$\vec{a} \ne \vec{0}, \vec{b} \ne \vec{0}$ とする。
(1) $|\vec{a} + t \vec{b}|$ を最小にする実数 $t$ の値 $t_0$ と、
そのときの最小値 $m$ を、$|\vec{a}| , |\vec{b}| , \vec{a} + \vec{b}$ を用いて表せ。
(2) 更に、$\vec{a}$ と $\vec{b}$ が平行でないとき、
$\vec{a} + t_0 \vec{b}$ と $\vec{b}$ は垂直であることを示せ。
チャプター:

0:00 オープニング、問題概要
0:40 そのまま平方完成
1:43 ②の解説
2:27 条件の考え方と記述における注意点

単元: #平面上のベクトル#平面上のベクトルと内積#数学(高校生)#数C
教材: #4S数学#中高教材#4S数学CのB問題解説#平面上のベクトル
指導講師: 理数個別チャンネル
問題文全文(内容文):
$\vec{a} \ne \vec{0}, \vec{b} \ne \vec{0}$ とする。
(1) $|\vec{a} + t \vec{b}|$ を最小にする実数 $t$ の値 $t_0$ と、
そのときの最小値 $m$ を、$|\vec{a}| , |\vec{b}| , \vec{a} + \vec{b}$ を用いて表せ。
(2) 更に、$\vec{a}$ と $\vec{b}$ が平行でないとき、
$\vec{a} + t_0 \vec{b}$ と $\vec{b}$ は垂直であることを示せ。
投稿日:2025.06.28

<関連動画>

【数学B/平面ベクトル】ベクトルの成分の成分計算

アイキャッチ画像
単元: #平面上のベクトル#平面上のベクトルと内積#数学(高校生)#数C
指導講師: 【ゼロから理解できる】高校数学・物理
問題文全文(内容文):
$\vec{ a }=(-1,2),\vec{ b }=(2,-3)$のとき、次のベクトルを成分で表し、その大きさを求めよ。
この動画を見る 

【数C】ベクトルの基本④内積の基本的な考え方

アイキャッチ画像
単元: #平面上のベクトル#平面上のベクトルと内積#数学(高校生)#数C
教材: #チャート式#青チャートⅡ・B#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
内積の基本的な考え方
直角三角形ABCにおいて内積AB・AC、BA・BC、CA・CB、AB・BCを求めよ。
この動画を見る 

数検準1級1次(3番 ベクトル)

単元: #数学検定・数学甲子園・数学オリンピック等#平面上のベクトル#数学検定#数学検定準1級#数学(高校生)#数C
指導講師: ますただ
問題文全文(内容文):
$\boxed{3}$ $\vert \overrightarrow{ a }\vert=\vert \overrightarrow{ b }\vert,\vert \overrightarrow{ c }\vert=1$
$\vert \overrightarrow{ a }\vert \perp \vert \overrightarrow{ b }\vert,\vert \overrightarrow{ b }\vert \perp \vert \overrightarrow{ c }\vert,\vert \overrightarrow{ c }\vert \perp \vert \overrightarrow{ a}\vert$のとき,

$\vert \overrightarrow{ x }\vert=\vert \overrightarrow{ a }\vert+2\vert \overrightarrow{ b }\vert+3\vert \overrightarrow{ c }\vert$
$\vert \overrightarrow{ y }\vert=3\vert \overrightarrow{ a }\vert+\vert \overrightarrow{ b }\vert-2\vert \overrightarrow{ c }\vert$
のなす角$\theta$に対して$\cos\theta$の値を求めよ.
この動画を見る 

福田の数学〜中央大学2023年経済学部第1問(5)〜平面ベクトルの成分と絶対値

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#数と式#平面上のベクトル#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#平面上のベクトルと内積#学校別大学入試過去問解説(数学)#中央大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
$\vec{a}+\vec{b}=(3,4),\vec{a}-\vec{b}=(1,2)$
のとき
$|2\vec{a}-3\vec{b}|$
の値を求めよ。

2023中央大学経済学部過去問
この動画を見る 

福田の数学〜慶應義塾大学2023年医学部第1問(1)〜図形の証明

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#大学入試過去問(数学)#式と証明#平面上のベクトル#図形と計量#三角比への応用(正弦・余弦・面積)#図形と方程式#恒等式・等式・不等式の証明#点と直線#ベクトルと平面図形、ベクトル方程式#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{1}$ (1)三角形ABCにおいて辺BCを4:3に内分する点をDとするとき、等式
$\boxed{\ \ あ\ \ }$$AB^2$+$\boxed{\ \ い\ \ }$$AC^2$=$AD^2$+$\boxed{\ \ う\ \ }$$BD^2$
が成り立つ。

203慶應義塾大学医学部過去問
この動画を見る 
PAGE TOP