【数Ⅲ】【関数と極限】次の無限級数の和を求めよ。(1) Σ(1/3)^n・cos nπ(2) Σ(-1/3)^n・sin nπ/2 - 質問解決D.B.(データベース)

【数Ⅲ】【関数と極限】次の無限級数の和を求めよ。(1) Σ(1/3)^n・cos nπ(2) Σ(-1/3)^n・sin nπ/2

問題文全文(内容文):
次の無限級数の和を求めよ。
(1)$\displaystyle\sum_{n=1}^{\infty} \left( \dfrac{1}{3} \right)^n \cos n\pi$

(2) $\displaystyle\sum_{n=1}^{\infty} \left( -\dfrac{1}{3} \right)^n \sin \dfrac{n\pi}{2}$
チャプター:

0:00 問題と方針
0:24 (1)の解説
1:25 (2)の解説

単元: #関数と極限#関数の極限#数学(高校生)#数Ⅲ
教材: #4S数学#4S数学ⅢのB問題解説#中高教材#極限
指導講師: 理数個別チャンネル
問題文全文(内容文):
次の無限級数の和を求めよ。
(1)$\displaystyle\sum_{n=1}^{\infty} \left( \dfrac{1}{3} \right)^n \cos n\pi$

(2) $\displaystyle\sum_{n=1}^{\infty} \left( -\dfrac{1}{3} \right)^n \sin \dfrac{n\pi}{2}$
投稿日:2025.11.06

<関連動画>

福田のわかった数学〜高校3年生理系026〜極限(26)関数の極限、三角関数の極限(6)

アイキャッチ画像
単元: #関数と極限#関数の極限#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
数学\textrm{III} 三角関数の極限(6)\\
\lim_{x \to \frac{\pi}{2}}\frac{1-\sin x}{(2x-\pi)^2} を求めよ。
\end{eqnarray}
この動画を見る 

数学「大学入試良問集」【17−2 Sn入り漸化式と極限】を宇宙一わかりやすく

アイキャッチ画像
単元: #大学入試過去問(数学)#関数と極限#数列の極限#学校別大学入試過去問解説(数学)#熊本大学#数学(高校生)#数Ⅲ
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
数列$\{a_n\}$について、$S_n=\displaystyle \sum_{k=1}^n a_k$ $n=1,2,3,・・・,S_0=0$とおく。
$a_n=S_{n-1}+n・2^n$ $n=1,2,3,・・・$ が成り立つとき、次の各問いに答えよ。
(1)$S_n$を$n$の式で表せ。
(2)極限値$\displaystyle \lim_{ n \to \infty }\displaystyle \sum_{k=1}^n\displaystyle \frac{2^k}{a_k}$を求めよ。
この動画を見る 

福田の数学〜東京工業大学2024年理系第3問〜点列と漸化式の極限

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#漸化式#関数と極限#数列の極限#学校別大学入試過去問解説(数学)#数学(高校生)#数B#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{3}$ $xy$平面上に、点A($a$,0), B(0,$b$), C($-a$,0)(ただし0<$a$<$b$)をとる。点A,Bを通る直線を$l$とし、点Cを通り線分BCに垂直な直線を$k$とする。さらに、点Aを通り$y$軸に平行な直線と直線$k$との交点を$C_1$とし、点$C_1$を通り、$x$軸に平行な直線と直線$l$との交点を$A_1$とする。以下、$n$=1,2,3,...に対して、点$A_n$を通り$y$軸に平行な直線と直線$k$との交点を$C_{n+1}$、点$C_{n+1}$を通り$x$軸に平行な直線と直線$l$との交点を$A_{n+1}$とする。
(1)点$A_n$, $C_n$の座標を求めよ。
(2)△$CBA_n$の面積$S_n$を求めよ。
(3)$\displaystyle\lim_{n \to \infty}\frac{BA_n}{BC}$を求めよ。
この動画を見る 

【数Ⅲ】【関数と極限】数列の極限3 ※問題文は概要欄

アイキャッチ画像
単元: #関数と極限#数列の極限#数学(高校生)#数Ⅲ
教材: #4S数学#4S数学ⅢのB問題解説#中高教材#極限
指導講師: 理数個別チャンネル
問題文全文(内容文):
次の極限を求めよ。
(1) $ \displaystyle \lim_{ n \to \infty}\frac{1+2+3+\cdots\cdots+n}{n^2}$

(2) $ \displaystyle \lim_{ n \to \infty}\frac{4+7+10+\cdots\cdots+(3n+1)}{5+8+11+\cdots\cdots+(3n+2)}$

(3) $ \displaystyle \lim_{ n \to \infty}\frac{3+7+11+\cdots\cdots+(4n-1)}{3+5+7+\cdots\cdots+(2n+1)}$

(4) $ \displaystyle \lim_{ n \to \infty}(\frac{1+2+3+\cdots\cdots+n}{n+2}-\frac{n}{2})$
この動画を見る 

#21 数検1級1次 過去問 無限級数

アイキャッチ画像
単元: #数学検定・数学甲子園・数学オリンピック等#関数と極限#数学検定#数学検定1級#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \sum_{k=1}^\infty\ \displaystyle \frac{k}{1+k^2+k^4}$を求めよ。
この動画を見る 
PAGE TOP