整数問題 開明高校 - 質問解決D.B.(データベース)

整数問題 開明高校

問題文全文(内容文):
$\frac{3}{n+1}$が整数となるような整数nの値をすべて求めよ。
開明高等学校
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
$\frac{3}{n+1}$が整数となるような整数nの値をすべて求めよ。
開明高等学校
投稿日:2023.07.28

<関連動画>

整数問題 一橋大 令和四年

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
$2^a3^b+2^c3^d = 2022$を満たす0以上の整数a,b,c,dの組を求めよ。

2022一橋大学
この動画を見る 

群馬大(医)

アイキャッチ画像
単元: #数A#数Ⅱ#整数の性質#約数・倍数・整数の割り算と余り・合同式#指数関数と対数関数#対数関数#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$log_{5832}n$が有理数で$\displaystyle \frac{1}{2} \lt log_{5832}n \lt 1$である自然数$n$を求めよ

出典:群馬大学医学部 過去問
この動画を見る 

兵庫県立大 整数問題 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #数A#数Ⅱ#大学入試過去問(数学)#式と証明#整数の性質#約数・倍数・整数の割り算と余り・合同式#恒等式・等式・不等式の証明#学校別大学入試過去問解説(数学)#数学(高校生)#兵庫県立大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
正整数$a$と正の奇数
$p,q$が$2^a+p^2=q^4$を満たしている。

(1)
$q^2-p=2$を証明せよ。

(2)
$q$を全て求めよ。


出典:兵庫県立大学 過去問
この動画を見る 

整数問題

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$2^a+m^2=n^4$
$a,m,n$は自然数で,$m,n$は奇数であることを示せ.
この動画を見る 

千葉大 素数 整数問題 高校数学 Japanese university entrance exam questions

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#千葉大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
千葉大学過去問題
n,Nは自然数
(1)5以上の素数は6n+1の形で表されることを示せ。
(2)6N-1は、6n-1の形で表される素数を約数にもつことを示せ。
(3)6n-1の形で表される素数は無限にあることを示せ。
この動画を見る 
PAGE TOP