問題文全文(内容文):
\begin{eqnarray}
{\large\boxed{1}}s,tをs \lt tをみたす実数とする。座標平面上の3点A(1,2),B(s,s^2),C(t,t^2)\\が一直線上にあるとする。以下の問いに答えよ。\hspace{109pt}\\
(1)sとtの関係式を求めよ。\hspace{184pt}\\
(2)線分BCの中点をM(u,v)とする。uとvの間の関係式を求めよ。\hspace{36pt}\\
(3)s,tが変化するとき、vの最小値と、その時のu,s,tの値を求めよ。 \hspace{30pt}
\end{eqnarray}
神戸大学文系過去問
\begin{eqnarray}
{\large\boxed{1}}s,tをs \lt tをみたす実数とする。座標平面上の3点A(1,2),B(s,s^2),C(t,t^2)\\が一直線上にあるとする。以下の問いに答えよ。\hspace{109pt}\\
(1)sとtの関係式を求めよ。\hspace{184pt}\\
(2)線分BCの中点をM(u,v)とする。uとvの間の関係式を求めよ。\hspace{36pt}\\
(3)s,tが変化するとき、vの最小値と、その時のu,s,tの値を求めよ。 \hspace{30pt}
\end{eqnarray}
神戸大学文系過去問
単元:
#数Ⅱ#大学入試過去問(数学)#複素数と方程式#平面上のベクトル#図形と方程式#解と判別式・解と係数の関係#軌跡と領域#学校別大学入試過去問解説(数学)#神戸大学#数学(高校生)#数C
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\large\boxed{1}}s,tをs \lt tをみたす実数とする。座標平面上の3点A(1,2),B(s,s^2),C(t,t^2)\\が一直線上にあるとする。以下の問いに答えよ。\hspace{109pt}\\
(1)sとtの関係式を求めよ。\hspace{184pt}\\
(2)線分BCの中点をM(u,v)とする。uとvの間の関係式を求めよ。\hspace{36pt}\\
(3)s,tが変化するとき、vの最小値と、その時のu,s,tの値を求めよ。 \hspace{30pt}
\end{eqnarray}
神戸大学文系過去問
\begin{eqnarray}
{\large\boxed{1}}s,tをs \lt tをみたす実数とする。座標平面上の3点A(1,2),B(s,s^2),C(t,t^2)\\が一直線上にあるとする。以下の問いに答えよ。\hspace{109pt}\\
(1)sとtの関係式を求めよ。\hspace{184pt}\\
(2)線分BCの中点をM(u,v)とする。uとvの間の関係式を求めよ。\hspace{36pt}\\
(3)s,tが変化するとき、vの最小値と、その時のu,s,tの値を求めよ。 \hspace{30pt}
\end{eqnarray}
神戸大学文系過去問
投稿日:2022.11.23