【数Ⅰ】2次関数:【難問】場合分け嫌いな人必見!絶対値付き2次関数:序章 - 質問解決D.B.(データベース)

【数Ⅰ】2次関数:【難問】場合分け嫌いな人必見!絶対値付き2次関数:序章

問題文全文(内容文):
aを定数とする。xについての方程式 $│(x-2)(x-4)│=ax-5a+\dfrac{1}{2}$ が相異なる4つの実数解を持つときのaの値の範囲を求めよ。

場合分けの必要なし!
aの値によらず必ず通る定点を考慮する必要もなし!
できるだけラクをして正解にたどり着きましょう。
チャプター:

0:00 導入
1:22 グラフを書いてみる
2:17 4つ交点を持つということ
4:10 逆転の発想
4:50 注意点
5:36 エンディング

単元: #数Ⅰ#2次関数#2次関数とグラフ#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
aを定数とする。xについての方程式 $│(x-2)(x-4)│=ax-5a+\dfrac{1}{2}$ が相異なる4つの実数解を持つときのaの値の範囲を求めよ。

場合分けの必要なし!
aの値によらず必ず通る定点を考慮する必要もなし!
できるだけラクをして正解にたどり着きましょう。
投稿日:2023.02.23

<関連動画>

大阪市立大 無理数の証明

アイキャッチ画像
単元: #数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
(1)$m,n$を自然数とし,$m\gt n$とする.$2^{\frac{n}{m}}$は無理数であることを示せ.
(2)$2^{\frac{1}{3}}$は有理数係数の2次方程式の解にならないことを示せ.

1993大阪市立大過去問
この動画を見る 

福田のわかった数学〜高校1年生第9回〜2次関数の最大最小(2)

アイキャッチ画像
単元: #数Ⅰ#2次関数#2次関数とグラフ#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
数学$\textrm{I}$ 2次関数の最大最小(2)
次の関数の最小値とそのときの$x$を求めよ。
(1)$y=x^4+4x^2-3$
(2)$y=(x^2-2x)^2+4(x^2-2x)-1$
この動画を見る 

【高校数学】  数Ⅰ-77  三角比② ・ 公式編

アイキャッチ画像
単元: #数Ⅰ#図形と計量#三角比(三角比・拡張・相互関係・単位円)#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
$0° \lt \theta \lt 90°$のとき
$\sin (90°-\theta)=$①____
$\cos(90°-\theta)=$②____
$\tan(90°-\theta)=$③____
$\tan \theta=$④____
$\sin^2 \theta+\cos^2 \theta=$⑤____
$1+\tan^2 \theta=$⑥____

◎次の三角比を45°以下の角の三角比で表そう。
⑦$\sin56°=$
⑧$\cos79°=$
⑨$\tan62°=$

⑩$\sin \theta=\displaystyle \frac{1}{\sqrt{ 5 }}$のとき、$\cos \theta,\tan \theta$の値を求めよう。ただし、$\theta$は鋭角とする。
この動画を見る 

4次方程式

アイキャッチ画像
単元: #数Ⅰ#2次関数#2次方程式と2次不等式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$(x+5)^4+(x+7)^4=82$を解け
この動画を見る 

福田の入試問題解説〜東京大学2022年理系第3問〜点の存在する条件と領域の面積

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#大学入試過去問(数学)#数と式#集合と命題(集合・命題と条件・背理法)#図形と方程式#軌跡と領域#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
Oを原点とする座標平面上で考える。座標平面上の2点$S(x_1,y_1),T(x_2,y_2)$
に対し、点Sが点Tから十分離れているとは、
$|x_1-x_2| \geqq 1$ または $|y_1-y_2| \geqq 1$
が成り立つことと定義する。
不等式
$0 \leqq x \leqq 3, 0 \leqq y \leqq 3$
が表す正方形の領域をDとし、その2つの頂点A(3,0), B(3,3)を考える。
さらに、次の条件$(\textrm{i}),(\textrm{ii})$を共に満たす点Pをとる。
$(\textrm{i})$点Pは領域Dの点であり、かつ、放物線$y=x^2$上にある。
$(\textrm{ii})$点Pは、3点O,A,Bのいずれからも十分離れている。
点Pのx座標をaとする。
(1)aのとりうる値の範囲を求めよ。
(2)次の条件$(\textrm{iii}),(\textrm{iv})$をともに満たす点Qが存在しうる範囲の面積f(a)を求めよ。
$(\textrm{iii})$点Qは領域Dの点である。
$(\textrm{iv})$点Qは、4点O,A,B,Pのいずれからも十分離れている。
(3)aは(1)で求めた範囲を動くとする。(2)のf(a)を最小にするaの値を求めよ。

2022東京大学理系過去問
この動画を見る 
PAGE TOP