指数の連立方程式 - 質問解決D.B.(データベース)

指数の連立方程式

問題文全文(内容文):
\begin{eqnarray}
\left\{
\begin{array}{l}
2^{x-y}-x-y = 0 \\
2-(x+y)^{x-y}=0
\end{array}
\right.
\end{eqnarray}
x=? y=?
単元: #数学(中学生)#中2数学#連立方程式
指導講師: 数学を数楽に
問題文全文(内容文):
\begin{eqnarray}
\left\{
\begin{array}{l}
2^{x-y}-x-y = 0 \\
2-(x+y)^{x-y}=0
\end{array}
\right.
\end{eqnarray}
x=? y=?
投稿日:2022.11.05

<関連動画>

【中学数学】袋から玉の取り出し方の違い~確率の面白さ~【中2数学】

アイキャッチ画像
単元: #数学(中学生)#中2数学#確率
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
(1)赤玉2個と白玉3個が入っている袋がある。この袋から玉を1個とり出して色を調べ、次にまた玉を1個取り出すとき、どちらも赤玉が出る確率を求めよ。ただし、1度取り出した玉はもとに戻さないものとする。
(2)赤玉2個と白玉3個が入っている袋がある。この袋から同時に2個玉を取り出すときどちらも赤玉が出る確率を求めよ。
(3)赤玉2個と白玉3個が入っている袋がある。この袋から玉を1個とり出して色を調べ、玉を戻す。次にまた玉を一個取り出すとき、どちらも赤玉が出る確率を求めよ。
この動画を見る 

【中2 P.29】式の計算の特訓②

アイキャッチ画像
単元: #数学(中学生)#中2数学#式の計算(単項式・多項式・式の四則計算)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
2.次の計算をしよう.

$\boxed{1} \dfrac{4x+y}{5}-\dfrac{2x-y}{3}$

$\boxed{2} (-2x)^2\div \dfrac{2}{3}x$

$\boxed{3} 14x^2y^2\div (-4x)\div (-21xy)$

$\boxed{4} 5x-y-\dfrac{x-2y}{3}$

$\boxed{5} 6x\div \dfrac{9}{4}y \times 3xy$

$\boxed{6} \dfrac{1}{8}(5x-3y)+\dfrac{1}{4}(-x-8y+3)$
この動画を見る 

【中学数学】多項式の計算~単項式・多項式・次数・定数項・同類項~ 1-1【中2数学】

アイキャッチ画像
単元: #数学(中学生)#中2数学#式の計算(単項式・多項式・式の四則計算)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
$
\begin{align}
& 以下の多項式の項を答えろ\\
& (1)\ s + 3t\\
& (2)\ 3x + 4xy\\
\\
&次の式は何次式か\\
& (3)\ 3x^2 + 2x + y^2\\
& (4)\ t^{50} + abc + 7
\end{align}
$
この動画を見る 

連立方程式って何をしているのか?

アイキャッチ画像
単元: #数学(中学生)#中2数学#連立方程式
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
連立方程式について解説動画です
この動画を見る 

【高校受験対策】数学-死守21

アイキャッチ画像
単元: #数学(中学生)#中2数学#中3数学#式の計算(単項式・多項式・式の四則計算)#式の計算(展開、因数分解)#円#文章題#文章題その他#立体図形#体積・表面積・回転体・水量・変化のグラフ#表とグラフ#表とグラフ・集合
指導講師: とある男が授業をしてみた
問題文全文(内容文):
①$7-(-5)$を計算しなさい.

②$(- 4) ^ 2 + 3 \times (- 2)$を計算しなさい.

③$\dfrac{3}{2} - 6y - \dfrac{1}{4} (3x-8y)$を計算しなさい.

④比例式$ 2:5 = (x - 2):(x + 7)$をみたす$x$の値を求めなさい.

⑤$\sqrt{45} - \sqrt{20} + \dfrac{15}{\sqrt5}$ を計算しなさい.

⑥$(x + 1)(x - 7) - 20$を因数分解しなさい.

⑦$a$の本の鉛筆を,$b$人の子どもに1人7本ずっ配ると3本余るとき,
$b$を$a$の式で表しなさい.

⑧ 右の図で,5点$A,B,C,D,E$は円$O$の円周上にあり,
$\angle BAC = 24°,\angle CED = 38°$,
$\stackrel{\huge\frown}{CD}=\stackrel{\huge\frown}{DE}$である.
線分$BD$と線分$CE$の交点を$F$とするとき,$\angle CFD$の大きさを求めなさい.

⑨下の表には,6人の生徒$A~F$のそれぞれの身長から,
160cmをひいた値が示されている/
この表をもとに,これら6人の生徒の身長の平均を求めたところ161.5cmであった.
このとき,生徒$F$の身長を求めなさい.

⑩半径が3cmの球と体積の等しい円柱がある.
この円柱の底面の半径が4cmのとき,円柱の高さを求めなさい.

図は動画内参照
この動画を見る 
PAGE TOP