【高校数学】 数B-18 ベクトルの内積⑦ - 質問解決D.B.(データベース)

【高校数学】 数B-18 ベクトルの内積⑦

問題文全文(内容文):
$\overrightarrow{ AB }=(a,b),\overrightarrow{ AC }=(c,d)$とすると、△ABCの面積は
△ABC=①____________=②________

◎次の三角形ABCの面積を求めよう。

③$| \vec{ AB } |=6,| \vec{ AC } |=4,\overrightarrow{ AB }・\overrightarrow{ AC }=16$

④$A(2.8)、B(0,-2)、C(6.4)$
単元: #平面上のベクトル#平面上のベクトルと内積#数学(高校生)#数C
指導講師: とある男が授業をしてみた
問題文全文(内容文):
$\overrightarrow{ AB }=(a,b),\overrightarrow{ AC }=(c,d)$とすると、△ABCの面積は
△ABC=①____________=②________

◎次の三角形ABCの面積を求めよう。

③$| \vec{ AB } |=6,| \vec{ AC } |=4,\overrightarrow{ AB }・\overrightarrow{ AC }=16$

④$A(2.8)、B(0,-2)、C(6.4)$
投稿日:2015.12.09

<関連動画>

【数B】平面ベクトル:ベクトル方程式 ベクトルと軌跡:座標平面において、△ABCはBA・CA=0を満たしている。この平面上の点Pが条件AP・BP+BP・CP+CP・AP=0を満たす(続きは概要欄で)

アイキャッチ画像
単元: #平面上のベクトル#平面上のベクトルと内積#数学(高校生)#数C
指導講師: 理数個別チャンネル
問題文全文(内容文):
座標平面において、△ABCはBA・CA=0を満たしている。この平面上の点Pが条件AP・BP+BP・CP+CP・AP=0を満たすとき、Pはどのような図形上の点であるか。
この動画を見る 

福田の数学〜立教大学2021年経済学部第1問(4)〜ベクトル方程式と三角形の面積

アイキャッチ画像
単元: #大学入試過去問(数学)#平面上のベクトル#ベクトルと平面図形、ベクトル方程式#学校別大学入試過去問解説(数学)#立教大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$(4)三角形$OAB$において、2つのベクトル$\overrightarrow{ OA }, \overrightarrow{ OB }$は$|\overrightarrow{ OA }|=3, |\overrightarrow{ OB }|=2$,
$\overrightarrow{ OA }・\overrightarrow{ OB }=2$ を満たすとする。実数s,tが
$s \geqq 0, t \geqq 0, 2s+t \leqq 1$
を満たすとき、$\overrightarrow{ OP }=s\ \overrightarrow{ OA }+t\ \overrightarrow{ OB }$
と表されるような点Pの
存在する範囲の面積は$\boxed{カ}$である。

2021立教大学経済学部過去問
この動画を見る 

【数C】中高一貫校問題集4 464:平面上のベクトル:ベクトル方程式:ベクトル方程式の復習②

アイキャッチ画像
単元: #平面上のベクトル#ベクトルと平面図形、ベクトル方程式#数学(高校生)#数C
教材: #TK数学#TK数学問題集4#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
△ABC(それぞれの位置ベクトルをa、b、cとする)について、以下の問いに答えよ。
(2)頂点Aと辺BCの中点を通る直線のベクトル方程式を求めよ
この動画を見る 

【高校数学】 数B-28 ベクトル方程式③

アイキャッチ画像
単元: #平面上のベクトル#ベクトルと平面図形、ベクトル方程式#数学(高校生)#数C
指導講師: とある男が授業をしてみた
問題文全文(内容文):
定点$A(\vec{ a })$を通り、$\overrightarrow{ n }(≠\vec{ 0 })$に垂直な直線のベクトル方程式は①__________で、$\vec{ n }$を直線の法線ベクトルという。
また、$ax+by+c=0$において、$\overrightarrow{ n }=(a,b)$はその法線ベクトルである。

◎次の点Aを通り、$\overrightarrow{ n }$が法線ベクトルである直線の方程式を求めよう。

②$A(2,-1),\vec{ n }=(3,4)$

③$A(-1,3),\vec{ n }(5,-1)$
この動画を見る 

福田の数学〜上智大学2024理工学部第3問〜円の内部を反射しながら進む点の通過範囲

アイキャッチ画像
単元: #大学入試過去問(数学)#平面上のベクトル#数列#平面上のベクトルと内積#漸化式#学校別大学入試過去問解説(数学)#上智大学#数学(高校生)#数B#数C
指導講師: 福田次郎
問題文全文(内容文):
点$O$を中心とし半径が$1$の円形のビリヤード台がある。台の縁の点$P_1$に大きさが無視できる球$Q$を置き、半径$P_1O$とのなす角が$\frac{\pi}{8}$の方向へ球$Q$を打ち出す。
球$Q$は、ビリヤード台の縁に当たると、図のように入射角と反射角が等しくなるように反射し、一度打ち出されたら止まらないものとする。
$i=1,2,3,\cdots$に対し、点$P_i$の次に球$Q$が縁に当たる点を$P_{i+1}$とし、$\overrightarrow{OP_i}=\overrightarrow{p_i}$とする。
(1)$\overrightarrow{p_3}=\fbox{あ}\overrightarrow{p_1}+\fbox{い}\overrightarrow{p_2},\overrightarrow{p_4}=\fbox{う}\overrightarrow{p_1}+\fbox{え}\overrightarrow{p_2}$である。
(2)$P_i=P_1となるiのうち、 i\geqq 2で最小のものは\fbox{ソ}である。$
(3)$線分P_1P_2とP_3P_4 との交点をA、線分P_1P_2とP_6P_7との交点をBとすると$
$\overrightarrow{OA}=\fbox{お}\overrightarrow{p_1}+\fbox{か}\overrightarrow{p_2},\overrightarrow{OB}=\fbox{き}\overrightarrow{p_1}+\fbox{く}\overrightarrow{p_2}$である。
(4)球$Q$が点$P_1$から打ち出されてから初めて再び点$P_1$に到達するまでに、中心$O$と球$Q$とを結ぶ線分$OQ$がちょうど2回通過する領域の面積は$\fbox{タ}+\fbox{チ}\sqrt{2}$である。
この動画を見る 
PAGE TOP