【テスト対策・中3】2章-1 - 質問解決D.B.(データベース)

【テスト対策・中3】2章-1

問題文全文(内容文):
$x=\sqrt6+\sqrt5,y=\sqrt6-\sqrt5$のとき,次の値を求めよ.

①$xy$

②$x^2+y^2-xy$

③$x^2-y^2$

④$\dfrac{x}{y}+\dfrac{y}{x}$
単元: #数学(中学生)#中3数学#平方根
指導講師: とある男が授業をしてみた
問題文全文(内容文):
$x=\sqrt6+\sqrt5,y=\sqrt6-\sqrt5$のとき,次の値を求めよ.

①$xy$

②$x^2+y^2-xy$

③$x^2-y^2$

④$\dfrac{x}{y}+\dfrac{y}{x}$
投稿日:2017.05.20

<関連動画>

【「式の形」が見えればOK!】平方根:東京都立国立高等学校~全国入試問題解法

アイキャッチ画像
単元: #数学(中学生)#中3数学#平方根#高校入試過去問(数学)
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
$ \left(\dfrac{\sqrt5+\sqrt3}{\sqrt2}\right)^2+ \left(\dfrac{\sqrt5+\sqrt3}{\sqrt2}\right) \left(\dfrac{\sqrt5-\sqrt3}{\sqrt2}\right)-\left(\dfrac{\sqrt5-\sqrt3}{\sqrt2}\right)^2$を計算せよ.

都立国立高校過去問
この動画を見る 

区別できる?

アイキャッチ画像
単元: #数学(中学生)#中3数学#平方根
指導講師: 数学を数楽に
問題文全文(内容文):
$(\sqrt 3)^2=$
$\sqrt {3^2}=$
$(\sqrt {-3})^2=$
$\sqrt {(-3)^2}=$
この動画を見る 

ルート含む数の大小関係  青山学院

アイキャッチ画像
単元: #数学(中学生)#中3数学#平方根#高校入試過去問(数学)
指導講師: 数学を数楽に
問題文全文(内容文):
次の数を小さい順に並べ記号で答えよ
ア. $\frac{7}{6}$
イ. $\frac{\sqrt {10}}{3}$
ウ. $\sqrt{\frac{7}{6}}$
エ. $\frac{\sqrt5}{2}$

青山学院大学高等部
この動画を見る 

【高校受験対策/数学】死守63

アイキャッチ画像
単元: #数学(中学生)#中1数学#中2数学#中3数学#方程式#連立方程式#平方根#2次方程式#確率
指導講師: とある男が授業をしてみた
問題文全文(内容文):
高校受験対策・死守63


下の図1は、ある都市のある日の天気と気温であり、表示の気温は最高気温と最低気温を表している。
また、[ ]の中の数はある日の最高気温と最低気温が、前日の最高気温と最低気温に比べて何℃高いかを表している。
このときこの都市の前日の最低気温を求めなさい。
※図は動画参照


右上の図2の正方形の面積は50c㎡である。このとき、正方形の1辺の長さを求めなさい。
ただし、根号の中の数はできるだけ小さい自然数にすること。


1枚$a$ gの封筒に、1枚$b$ gの便せんを5枚入れて重さをはかったところ、60gより重かった。
この数量の関係を不等式で表しなさい。



ある店で、ポロシャツとトレーナーを1着ずつ定価で買うと、代金の合計は6300円である。
今日はポロシャツが定価の2割引き、トレーナーが定価より800円安くなっていたため、それぞれ1着ずう買うと、代金の合計は5000円になるという。
このとき、ポロシャツとトレーナーの定価をそれぞれ求めなさい。
ただし、消費税は考えないものとする。


下の図のように、正五角形ABCDEがあり、点Pは はじめに頂点Aの位置にある。
1から6までの目のある2個のさいころを同時に1回投げて、出た目の数の和だけ、点Pは左回りに頂点を順に1つずつ 移動する。
例えば、2個のさいころの出た目の数の和が3のときは、点Pは頂点Dの位置に移動する。
2個のさいころを同時に1回投げるとき、 点Pが頂点Eの位置に移動する確率を求めなさい。
ただし、それぞれのさいころにおいて、1から6までのどの目が出ることも同様に確からしいとする。
この動画を見る 

【数学】中3-23 ルートの問題をつめこんでみた

アイキャッチ画像
単元: #数学(中学生)#中3数学#平方根
指導講師: とある男が授業をしてみた
問題文全文(内容文):
$x=3 \sqrt{7}+2$のとき
$x^2-4x+4$の値は?

$x= \sqrt{2}+\sqrt{5}$ ,$y= \sqrt{2}-\sqrt{5} $の時
$x^2 - y^2$の値は?

$ \sqrt{a}+\sqrt{18}= \sqrt{50}$を満たす自然数$a$は?

$ \displaystyle \frac{1}{\sqrt{5}-\sqrt{3}} $を有理化しよう!

◎ $\sqrt{75a}$の値が自然数となるような$a$について…
⑤もっとも小さい$a$は?

⑥2番目に小さい$a$は?
この動画を見る 
PAGE TOP