数学「大学入試良問集」【19−10 指数関数の微分と面積の最大最小】を宇宙一わかりやすく - 質問解決D.B.(データベース)

数学「大学入試良問集」【19−10 指数関数の微分と面積の最大最小】を宇宙一わかりやすく

問題文全文(内容文):
定数$a(1 \lt a \lt 2)$に対して、曲線$y=a^x$上の点$(t,a^t)(0 \leqq t \leqq 1)$における接線を$l$とする。
次の問いに答えよ。

(1)
接線$l$の方程式を求めよ。
また、$l$と$y$軸の交点を$(0,b(t))$とし、$b(t)$の最小値を$a$で表せ。

(2)
接線$l$と$x$軸および2直線$x=0,x=1$で囲まれた台形の面積$S(t)$を求めよ。

(3)
$S(t)$の最大値を$a$で表せ。

(4)
$S(t)$の最小値を$a$で表せ。
単元: #大学入試過去問(数学)#積分とその応用#面積・体積・長さ・速度#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ#同志社大学
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
定数$a(1 \lt a \lt 2)$に対して、曲線$y=a^x$上の点$(t,a^t)(0 \leqq t \leqq 1)$における接線を$l$とする。
次の問いに答えよ。

(1)
接線$l$の方程式を求めよ。
また、$l$と$y$軸の交点を$(0,b(t))$とし、$b(t)$の最小値を$a$で表せ。

(2)
接線$l$と$x$軸および2直線$x=0,x=1$で囲まれた台形の面積$S(t)$を求めよ。

(3)
$S(t)$の最大値を$a$で表せ。

(4)
$S(t)$の最小値を$a$で表せ。
投稿日:2021.09.09

<関連動画>

【数Ⅲ】【積分とその応用】次の極限値を求めよ。(1) lim[x→0]1/x∫[0→x]1/(1+cost)dt(2) lim[x→0]∫[0→x](1+sint)²/xdt他1問

アイキャッチ画像
単元: #積分とその応用#定積分#数学(高校生)#数Ⅲ
教材: #4S数学#4S数学ⅢのB問題解説#中高教材#積分法の応用
指導講師: 理数個別チャンネル
問題文全文(内容文):
導関数、定積分の定義を利用して、次の極限値を求めよ。
(1) $\displaystyle \lim_{ x \to 0 }\dfrac{1}{x}\int_0^x \dfrac{1}{1+cost}dt$
(2) $\displaystyle \lim_{ x \to 0 }\int_0^x \dfrac{(1+sint)^2}{x}dt$
(3) $\displaystyle \lim_{ x \to 0 }\int_0^{x^2} \dfrac{cos⁵t}{x}dt$
この動画を見る 

重積分⑩-5 #151【曲面の面積】(高専数学 微積II,数検1級1次解析対応)

アイキャッチ画像
単元: #数学検定・数学甲子園・数学オリンピック等#積分とその応用#数学検定#数学検定1級#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$D:x^2+y^2\leqq 1$
曲面$Z=xy$の$D$上における面積$S$を求めよ.
この動画を見る 

#高専数学_11#定積分#元高専教員

アイキャッチ画像
単元: #数Ⅱ#微分法と積分法#積分とその応用#定積分#不定積分・定積分#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{4} \displaystyle \frac{dx}{x^2-4x+8}$
この動画を見る 

AkiyaMathさんと学ぶ積分問題 #King_property

アイキャッチ画像
単元: #積分とその応用#定積分#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{1}\displaystyle \frac{log(1+2x)}{1+x+x^2}dx$
この動画を見る 

大学入試問題#615「ラッキー問題?」 東京工業大学(1976) #積分方程式

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#東京工業大学#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{x} f(t)dt=e^x-ae^{2x}\displaystyle \int_{0}^{1} f(t)e^{-t}dt$のとき
関数$f(x),$定数$a$を求めよ。

出典:1976年東京工業大学 入試問題
この動画を見る 
PAGE TOP