問題文全文(内容文):
$a_n=\displaystyle \frac{1}{\sqrt{ 5 }}${$(\displaystyle \frac{5+\sqrt{ 5 }}{2})^n-(\displaystyle \frac{5-\sqrt{ 5 }}{2})^n$}
(1)
$a_{n+2}$を$a_{n+1},a_{n}$を用いて表せ
(2)
$S_{n+1}$を$a_{n}$の1次式で表せ
出典:1996年三重大学 過去問
$a_n=\displaystyle \frac{1}{\sqrt{ 5 }}${$(\displaystyle \frac{5+\sqrt{ 5 }}{2})^n-(\displaystyle \frac{5-\sqrt{ 5 }}{2})^n$}
(1)
$a_{n+2}$を$a_{n+1},a_{n}$を用いて表せ
(2)
$S_{n+1}$を$a_{n}$の1次式で表せ
出典:1996年三重大学 過去問
単元:
#大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#数学(高校生)#三重大学#数B
指導講師:
鈴木貫太郎
問題文全文(内容文):
$a_n=\displaystyle \frac{1}{\sqrt{ 5 }}${$(\displaystyle \frac{5+\sqrt{ 5 }}{2})^n-(\displaystyle \frac{5-\sqrt{ 5 }}{2})^n$}
(1)
$a_{n+2}$を$a_{n+1},a_{n}$を用いて表せ
(2)
$S_{n+1}$を$a_{n}$の1次式で表せ
出典:1996年三重大学 過去問
$a_n=\displaystyle \frac{1}{\sqrt{ 5 }}${$(\displaystyle \frac{5+\sqrt{ 5 }}{2})^n-(\displaystyle \frac{5-\sqrt{ 5 }}{2})^n$}
(1)
$a_{n+2}$を$a_{n+1},a_{n}$を用いて表せ
(2)
$S_{n+1}$を$a_{n}$の1次式で表せ
出典:1996年三重大学 過去問
投稿日:2019.04.26