三重大 逆 漸化式 Mathematics Japanese university entrance exam - 質問解決D.B.(データベース)

三重大 逆 漸化式 Mathematics Japanese university entrance exam

問題文全文(内容文):
$a_n=\displaystyle \frac{1}{\sqrt{ 5 }}${$(\displaystyle \frac{5+\sqrt{ 5 }}{2})^n-(\displaystyle \frac{5-\sqrt{ 5 }}{2})^n$}

(1)
$a_{n+2}$を$a_{n+1},a_{n}$を用いて表せ

(2)
$S_{n+1}$を$a_{n}$の1次式で表せ

出典:1996年三重大学 過去問
単元: #大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#数学(高校生)#三重大学#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
$a_n=\displaystyle \frac{1}{\sqrt{ 5 }}${$(\displaystyle \frac{5+\sqrt{ 5 }}{2})^n-(\displaystyle \frac{5-\sqrt{ 5 }}{2})^n$}

(1)
$a_{n+2}$を$a_{n+1},a_{n}$を用いて表せ

(2)
$S_{n+1}$を$a_{n}$の1次式で表せ

出典:1996年三重大学 過去問
投稿日:2019.04.26

<関連動画>

数学「大学入試良問集」【13−3 等差×等比の和】を宇宙一わかりやすく

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#数列とその和(等差・等比・階差・Σ)#学校別大学入試過去問解説(数学)#数学(高校生)#数B#名古屋市立大学
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
年齢1の1つの個体から始めて、以下の操作1,2を$n$回おこなった後の全個体の年齢数の合計を$S_n$とする。
操作1.
 年齢1の各個体から年齢0の$k$個の個体を発生される。
 ただし、$k \gt 1$とする。

操作2.
 全個体の年齢をそれぞれ1増やす。

次の問いに答えよ。
(1)
$k=2$のとき$S_4$を求めよ。

(2)
操作1,2を$n$回おこなった後の平均年齢を$A_n$とするとき、$A_n \lt \displaystyle \frac{k}{k-1}$となることを示せ。
この動画を見る 

2重階乗 中央大附属 (誘導は動画内あり)動画の最後に。。。

アイキャッチ画像
単元: #数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師: 数学を数楽に
問題文全文(内容文):
自然数nに対して $n! = n×(n-1)×(n-2)× \cdots ×3×2×1$
正の偶数mに対して$m!!= mx(m-2)×(m-4)× \cdots ×6×4×2$
(例)6!=6×5×4×3×2×1 , 6!! = 6×4×2
$(2k)!!$を$k!$を用いて表せ
(k:自然数)

2023中央大学付属高等学校 (改)
この動画を見る 

佐賀大 確率漸化式

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#数学(高校生)#佐賀大学#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
2023年 佐賀大学 過去問

0,1,2,3のカードから1枚選んでメモをしてもどすのを$n$回くり返し、
選んだカードの和を$S_n$とする。
$S_n$が3で割り切れる確率$p_n$、3で割って1余る確率$q_n$を求めよ。
この動画を見る 

【高校数学】数Ⅲ-71 数列の極限⑦(無限等比数列)

アイキャッチ画像
単元: #数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師: とある男が授業をしてみた
問題文全文(内容文):
①$a_1=1,a_{n+1}=\dfrac{1}{3}a_n+2(n=1,2,・・・)$によって
定められる数列$\{a_n\}$について、$\displaystyle \lim_{n\to\infty}a_n$を求めよ。

②$a_1=o,a_2=1,a_{n+2}=\dfrac{1}{4}(a_{n+1}+3a_n)(n=1,2,・・・)$によって
定められる数列$\{a_n\}$について、$\displaystyle \lim_{n\to\infty}a_n$を求めよ。
この動画を見る 

横浜市立(医)漸化式 高校数学 Japanese university entrance exam questions

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#数学(高校生)#数B#横浜市立大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
2016横浜市立大学過去問題
$a_1=1 , a_2 = 1$
$a_{n+2}-5a_{n+1}+6a_n-6n = 0$
この動画を見る 
PAGE TOP