数検準1級1次過去問(4番 複素数) - 質問解決D.B.(データベース)

数検準1級1次過去問(4番 複素数)

問題文全文(内容文):
4⃣
α=2+2i , β=3+33i
(1)|αβ|を求めよ。
(2)αβの偏角θを求めよ。
単元: #数学検定・数学甲子園・数学オリンピック等#複素数平面#複素数平面#数学検定#数学検定準1級#数学(高校生)#数C#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
4⃣
α=2+2i , β=3+33i
(1)|αβ|を求めよ。
(2)αβの偏角θを求めよ。
投稿日:2020.11.30

<関連動画>

長崎大(医、他)虚数方程式

アイキャッチ画像
単元: #大学入試過去問(数学)#複素数平面#複素数平面#学校別大学入試過去問解説(数学)#数学(高校生)#長崎大学#数C#数Ⅲ
指導講師: 鈴木貫太郎
問題文全文(内容文):
Z4=883i
これを解け.

長崎大(医,他)過去問
この動画を見る 

学習院 複素数 絶対値の最大最小 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #大学入試過去問(数学)#複素数平面#複素数平面#学校別大学入試過去問解説(数学)#数学(高校生)#数C
指導講師: 鈴木貫太郎
問題文全文(内容文):
学習院大学過去問題
複素数Z (Z0)
ω=Z+1Z+5
|Z|=2
|ω|の最大値と最小値
この動画を見る 

福田の数学〜早稲田大学2023年教育学部第1問(3)〜連立漸化式と複素数平面

アイキャッチ画像
単元: #大学入試過去問(数学)#複素数平面#数列#漸化式#複素数平面#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)#数B#数C
指導講師: 福田次郎
問題文全文(内容文):
x0=0,y0=1のとき、非負整数n0に対して、
xn+1=(cos3π11)xn(sin3π11)yn
yn+1=(cos3π11)xn+(sin3π11)yn
のとき、xnが最小となる最初のnを求めよ。

2023早稲田大学教育学部過去問
この動画を見る 

【数C】【複素数平面】複素数の大きさと式変形 ※問題文は概要欄

アイキャッチ画像
単元: #複素数平面#複素数平面#数学(高校生)#数C
指導講師: 理数個別チャンネル
問題文全文(内容文):
|z|=3かつ|z2|=4を満たす複素数zについて、次の値を求めよ。
(1)zz¯ (2) z+z¯
この動画を見る 

近畿大 茨城大 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#複素数平面#複素数#剰余の定理・因数定理・組み立て除法と高次方程式#複素数平面#学校別大学入試過去問解説(数学)#近畿大学#数学(高校生)#数C#茨城大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
近畿大学過去問題
x4Px2+P2P2=0が相異4実根をもつPの範囲

茨城大学過去問題
x3=iを解け
この動画を見る 
PAGE TOP preload imagepreload image