【数Ⅱ】図形と方程式:奇跡的な軌跡の解法② 2点からの距離の比が2:1の軌跡は?アポロニウスの円 - 質問解決D.B.(データベース)

【数Ⅱ】図形と方程式:奇跡的な軌跡の解法② 2点からの距離の比が2:1の軌跡は?アポロニウスの円

問題文全文(内容文):
A(-2,0),B(1,0)からの距離の比が2:1である点Pの軌跡を求めよ。
チャプター:

0:00 オープニング
0:10 イメージのお話
1:09 問題解説

単元: #数Ⅱ#図形と方程式#軌跡と領域#数学(高校生)
教材: #高校ゼミスタンダード#高校ゼミスタンダード数Ⅱ#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
A(-2,0),B(1,0)からの距離の比が2:1である点Pの軌跡を求めよ。
投稿日:2020.09.24

<関連動画>

【数学Ⅱ】三角関数の式の証明

アイキャッチ画像
単元: #数Ⅱ#三角関数#三角関数とグラフ#数学(高校生)
指導講師: カサニマロ【べんとう・ふきのとうの授業動画】
問題文全文(内容文):
【数学Ⅱ】三角関数の式の証明解説動画です
-----------------
$\displaystyle \frac{cos^2 \theta - \sin^2 \theta}{1+2 \sin \theta \cos \theta}=\displaystyle \frac{1- \tan \theta}{1+ \tan \theta}$
この動画を見る 

03愛知県教員採用試験(数学:13 極限値)

アイキャッチ画像
単元: #数Ⅱ#微分法と積分法#平均変化率・極限・導関数#その他#数学(高校生)#教員採用試験
指導講師: ますただ
問題文全文(内容文):
$\boxed{13}$これを解け.

$\displaystyle \lim_{x\to 0}\ \dfrac{\sin^{-1}x-x}{x^3}$
この動画を見る 

N進法 旭川医大、滋賀医科大 高校数学 Japanese university entrance exam questions

アイキャッチ画像
単元: #数A#数Ⅱ#大学入試過去問(数学)#式と証明#整数の性質#約数・倍数・整数の割り算と余り・合同式#ユークリッド互除法と不定方程式・N進法#恒等式・等式・不等式の証明#学校別大学入試過去問解説(数学)#旭川医科大学#数学(高校生)#滋賀医科大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
旭川医科大学過去問題'09
$n^2+nm-2m^2-7n-2m+25=0$
(1)nをmを用いて表せ
(2)m,n自然数とする。m,n求めよ。
この動画を見る 

福田の数学〜名古屋大学2025理系第3問〜球の通過範囲の体積

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#学校別大学入試過去問解説(数学)#数学(高校生)#名古屋大学
指導講師: 福田次郎
問題文全文(内容文):

$\boxed{3}$

以下の問いに答えよ。

(1)実数$r,\alpha$は$0\lt r \leqq 1,0\leqq \alpha \lt \pi$をみたすとする。

$xy$平面内で、点$(1,0)$を中心にもつ半径$r$の

円周およびその内部を$C$とする。

$C$を原点$(0,0)$を中心に反時計回りに角度$\alpha$だけ

回転させるとき、$C$が通過する領域の面積を求めよ。

(2)実数$R,\alpha$は$0\lt R \leqq 1,0\leqq \alpha \lt \pi$をみたすとする。

$xyz$空間内で、点$(1,0,0)$を中心にもつ半径$R$の

球面およびその内部を$B$とする。

$B$を$z$軸のまわりに角度$\alpha$だけ回転させるとき、

$B$が通過する領域の体積を求めよ。

ただし、回転の向きは回転後の$B$の中心が

$(\cos \alpha,\sin \alpha,0)$になるように選ぶものとする。

$2025$年名古屋大学理系過去問題
この動画を見る 

慶應義塾大 指数方程式の解の個数

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$8^x-3a4^x+4a=0(a \neq 0)$の異なる実数解の個数を求めよ

出典:1997年慶應義塾大学 過去問
この動画を見る 
PAGE TOP