【数Ⅱ】図形と方程式:奇跡的な軌跡の解法② 2点からの距離の比が2:1の軌跡は?アポロニウスの円 - 質問解決D.B.(データベース)

【数Ⅱ】図形と方程式:奇跡的な軌跡の解法② 2点からの距離の比が2:1の軌跡は?アポロニウスの円

問題文全文(内容文):
A(-2,0),B(1,0)からの距離の比が2:1である点Pの軌跡を求めよ。
チャプター:

0:00 オープニング
0:10 イメージのお話
1:09 問題解説

単元: #数Ⅱ#図形と方程式#軌跡と領域#数学(高校生)
教材: #高校ゼミスタンダード#高校ゼミスタンダード数Ⅱ#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
A(-2,0),B(1,0)からの距離の比が2:1である点Pの軌跡を求めよ。
投稿日:2020.09.24

<関連動画>

岐阜大 積分 3次方程式の実数解

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#微分法と積分法#剰余の定理・因数定理・組み立て除法と高次方程式#学校別大学入試過去問解説(数学)#不定積分・定積分#岐阜大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$f(x)=2x^3+ax^2-\displaystyle \int_{-2}^{1} x f(t) dt$
$f(x)=0$が異なる3つの実数解をもつ$a$の範囲を求めよ

出典:2013年岐阜大学 過去問
この動画を見る 

指数法則に従って手を動かすだけ

アイキャッチ画像
単元: #数Ⅱ#指数関数と対数関数#指数関数#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$ \left(x+\frac{1}{y} \right)^{-2}+\left(y+\frac{1}{x} \right)^{-2}=1$
$\left(x-\frac{1}{y} \right)^{-2}+\left(y-\frac{1}{x} \right)^{-2}=2$
$xy+\dfrac{1}{xy}$の値を求めよ.
この動画を見る 

九州大 良問再投稿 合成公式

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#三角関数#加法定理とその応用#学校別大学入試過去問解説(数学)#数学(高校生)#九州大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
$\sin 10^{ \circ }$は$8x^3-6x+1=0$の解であることを示し、他の2解も求めよ

出典:1975年九州大学 過去問
この動画を見る 

福田の数学〜名古屋大学2022年文系第3問〜放物線と放物線で囲まれた面積

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#学校別大学入試過去問解説(数学)#面積、体積#数学(高校生)#名古屋大学
指導講師: 福田次郎
問題文全文(内容文):
a,bを実数とし、放物線$y=\frac{1}{2}x^2$を$C_1$、放物線$y=-(x-a)^2+b$を$C_2$とする。
(1)$C_1$と$C_2$が異なる2点で交わるためのa,bの条件を求めよ。
以下、$C_1$と$C_2$は異なる2点で交わるとし、$C_1$と$C_2$で囲まれた図形の面積をSとする。
(2)$S=16$となるためのa,bの条件を求めよ。
(3)a,bは$b \leqq a+3$を満たすとする。このときSの最大値を求めよ。

2022名古屋大学文系過去問
この動画を見る 

【短時間でポイントチェック!!】定積分で表された関数の極値を求める問題〔現役講師解説、数学〕

アイキャッチ画像
単元: #数Ⅱ#微分法と積分法#接線と増減表・最大値・最小値#数学(高校生)
指導講師: 3rd School
問題文全文(内容文):
$f(x)=\displaystyle \int_{2}^{x} t(t-2) dt$の極値を求めよ。
この動画を見る 
PAGE TOP