福田の一夜漬け数学〜2次関数の最大最小(2)軸の動く最大最小〜高校1年生 - 質問解決D.B.(データベース)

福田の一夜漬け数学〜2次関数の最大最小(2)軸の動く最大最小〜高校1年生

問題文全文(内容文):
$y=x^2-4ax (0 \leqq x \leqq 2)$の最小値$m(a)$を求めよ。


$y=x^2-4ax (0 \leqq x \leqq 2)$の最大値$M(a)$を求めよ。


$y=M(a),y=m(a)$のグラフを描け。
$M(a)=\begin{eqnarray}
\left\{
\begin{array}{l}
4-8a (a \lt \frac{1}{2}) \\
0 (a \geqq \frac{1}{2})
\end{array}
\right.
\end{eqnarray}$


$m(a)=\begin{eqnarray}
\left\{
\begin{array}{l}
0 (a \lt 0) \\
-4a^2 (0 \leqq a \leqq 1) \\
4-8a (1 \lt a)
\end{array}
\right.
\end{eqnarray}$


$y=-x^2-ax+a (0 \leqq x \leqq 1)$の最小値$m(a)$を求めよ。
単元: #数Ⅰ#2次関数#2次関数とグラフ#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$y=x^2-4ax (0 \leqq x \leqq 2)$の最小値$m(a)$を求めよ。


$y=x^2-4ax (0 \leqq x \leqq 2)$の最大値$M(a)$を求めよ。


$y=M(a),y=m(a)$のグラフを描け。
$M(a)=\begin{eqnarray}
\left\{
\begin{array}{l}
4-8a (a \lt \frac{1}{2}) \\
0 (a \geqq \frac{1}{2})
\end{array}
\right.
\end{eqnarray}$


$m(a)=\begin{eqnarray}
\left\{
\begin{array}{l}
0 (a \lt 0) \\
-4a^2 (0 \leqq a \leqq 1) \\
4-8a (1 \lt a)
\end{array}
\right.
\end{eqnarray}$


$y=-x^2-ax+a (0 \leqq x \leqq 1)$の最小値$m(a)$を求めよ。
投稿日:2018.04.18

<関連動画>

福田の一夜漬け数学〜2次関数・解の存在範囲(3)少なくとも1つ〜高校1年生

アイキャッチ画像
単元: #数Ⅰ#2次関数#2次方程式と2次不等式#2次関数とグラフ#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{1}} x^2+(2-m)x+4$$-2m$$=0$ が$-1 \lt x \lt 1$の範囲に少なくとも
1つ解をもつようなmの値の範囲を求めよ。

${\Large\boxed{2}} x^2+(2-m)x+4$$-2m$$=0$ が$-1 \leqq x \leqq 1$の範囲に少なくとも
1つ解をもつような$m$の値の範囲を求めよ。

(数学$\textrm{II}$の内容)
${\Large\boxed{3}}$ 実数$m$が$1 \leqq m \leqq 3$の範囲を動くとき
直線$y=2mx+m^2$ の通過する範囲を図示せよ。
この動画を見る 

すっきり、あっさり

アイキャッチ画像
単元: #数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$ z=1+\sqrt[5]{2}+\sqrt[5]{4}+\sqrt[5]{8}+\sqrt[5]{16}$である.
$ \left(1+\dfrac{1}{z}\right)^{50}$の値を求めよ.
この動画を見る 

「二次不等式の解の条件②」【高校数学ⅠA】を宇宙一わかりやすく

アイキャッチ画像
単元: #数Ⅰ#2次関数#2次方程式と2次不等式#数学(高校生)
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
以下の2次方程式がただ1つの共通な実数解をもつような定数$k$の値を求めよ。
また、その共通会を求めよ。
$x^2+(k-4)x-2=0$ ・・・①
$x^2-2x-k=0$ ・・・②

次の問いに答えよ。
(1)
すべての実数$x$について、2次不等式$x^2-2kx-3k+4 \gt 0$が成り立つような$k$の値の範囲を求めよ。

(2)
すべての実数$x$について不等式$(k-2)x^2-2(k-1)x+3k-5 \geqq 0$が成り立つような$k$の値の範囲を求めよ。

(3)
2次不等式$x^2-kx+k+3 \leqq 0$を満たす実数$x$が存在するような定数$k$の値の範囲を求めよ。

(4)
$x \geqq 2$を満たすすべての実数$x$について、2次不等式$x^2-2kx-3k+4 \gt 0$が成り立つような$k$の値の範囲を求めよ。

(5)
$-2 \leqq x \leqq 0$を満たすすべての実数$x$について、2次不等式$x^2-2kx-3k+4 \geqq 0$が成り立つような$k$の範囲を求めよ。
この動画を見る 

式の値 広島大附属

アイキャッチ画像
単元: #数学(中学生)#数Ⅰ#数と式#式の計算(整式・展開・因数分解)#高校入試過去問(数学)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
$a^2 - b^2 + (a - b) = 0$
$a+b =?$
ただし$a \neq b$

広島大学附属高等学校
この動画を見る 

一橋大 整数問題 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#数と式#式の計算(整式・展開・因数分解)#学校別大学入試過去問解説(数学)#一橋大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$m$自然数

$m^3+3m^2+2m+6$がある自然数の3乗となる$m$を求めよ

出典:一橋大学 過去問
この動画を見る 
PAGE TOP