【高校数学】 数B-46 位置ベクトルと図形② - 質問解決D.B.(データベース)

【高校数学】 数B-46 位置ベクトルと図形②

問題文全文(内容文):
①四面体$OABC$がある.
線分$AB$を$1:2$に内分する点を$D$,線分$BC$の中点を$E$とする.
線分$AE$と線分$CD$の交点を$P$とするとき,
$\overrightarrow{OP}$を$\overrightarrow{OA}=\large{\overrightarrow{a}},\overrightarrow{OB}=\large{\overrightarrow{b}},\overrightarrow{OC}=\large{\overrightarrow{c}}$を用いて表そう.
単元: #平面上のベクトル#平面上のベクトルと内積#ベクトルと平面図形、ベクトル方程式#数学(高校生)#数C
指導講師: とある男が授業をしてみた
問題文全文(内容文):
①四面体$OABC$がある.
線分$AB$を$1:2$に内分する点を$D$,線分$BC$の中点を$E$とする.
線分$AE$と線分$CD$の交点を$P$とするとき,
$\overrightarrow{OP}$を$\overrightarrow{OA}=\large{\overrightarrow{a}},\overrightarrow{OB}=\large{\overrightarrow{b}},\overrightarrow{OC}=\large{\overrightarrow{c}}$を用いて表そう.
投稿日:2016.01.11

<関連動画>

福田の数学〜慶應義塾大学2023年薬学部第1問(4)〜球面上の3点が作る三角形

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#大学入試過去問(数学)#平面上のベクトル#空間ベクトル#図形と計量#三角比(三角比・拡張・相互関係・単位円)#図形と方程式#円と方程式#ベクトルと平面図形、ベクトル方程式#空間ベクトル#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{1}$ (4)座標空間に球面S:$(x-3)^2$+$(y+2)^2$+$(z-1)^2$=36 がある。球面Sが平面y=2 と交わってできる円をCとおく。
(i)円Cの中心の座標は$\boxed{\ \ ク\ \ }$であり、半径は$\boxed{\ \ ケ\ \ }$である。
(ii)円Cと平面x=3の交点をA,Bとし、AとB以外の球面S上の任意の点をPとする。三角形PABにおいて、辺PBを4:3に内分する点をD、線分ADを5:3に内分する点をMとし、直線PMと辺ABとの交点をEとする。このとき、AEの長さは$\boxed{\ \ コ\ \ }$である。ただし、Bのz座標はAのz座標よりも大きいとする。

2023慶應義塾大学薬学部過去問
この動画を見る 

【数学B/平面ベクトル】ベクトル方程式の総まとめ

アイキャッチ画像
単元: #平面上のベクトル#ベクトルと平面図形、ベクトル方程式#数学(高校生)#数C
指導講師: 【ゼロから理解できる】高校数学・物理
問題文全文(内容文):
(1)
点$A(2,4),\vec{ d }=(1,3)$のとき、点$A$を通り、$\vec{ d }$が方向ベクトルである直線の媒介変数表示を、媒介変数を$t$として求めよ。
また、$t$を消去した式で表せ。


(2)
2点$A(-1,2),$ $B(3,5)$を通る直線の媒介変数表示を、媒介変数を$t$として求めよ。


(3)
点$A(-1,2),\vec{ n }=(3,4)$のとき、点$A$を通り、$\vec{ n }$が法線ベクトルである直線の方程式を求めよ。


(4)
点$A(1,2)$を中心とし、半径が$3$である円の方程式を、ベクトルを利用して求めよ。
この動画を見る 

【数C】平面ベクトル:単位ベクトルって何??公式がよくわからない!そんな疑問が1分半で解決♪

アイキャッチ画像
単元: #平面上のベクトル#平面上のベクトルと内積#数学(高校生)#数C
指導講師: 理数個別チャンネル
問題文全文(内容文):
a→=(3,2)と同じ向きの単位ベクトルを求めなさい。
この動画を見る 

福田の数学〜青山学院大学2021年理工学部第2問〜平面ベクトルとベクトル方程式

アイキャッチ画像
単元: #大学入試過去問(数学)#平面上のベクトル#平面上のベクトルと内積#ベクトルと平面図形、ベクトル方程式#学校別大学入試過去問解説(数学)#数学(高校生)#数C#青山学院大学
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{2}}$ 平面上に3点O,A,Bがあり、
$|\overrightarrow{ OA }|=|\sqrt2\overrightarrow{ OA }+\overrightarrow{ OB }|=|2\sqrt2\overrightarrow{ OA }+\overrightarrow{ OB }|=1$
を満たしている。

(1)$|\overrightarrow{ OB }|=\sqrt{\boxed{\ \ ア\ \ }}$

(2)$\cos\angle AOB=\frac{\boxed{\ \ イウ\ \ }\sqrt{\boxed{\ \ エオ\ \ }}}{\boxed{\ \ カキ\ \ }}$

(3)実数s,tが
$s \geqq 0,\ t \geqq 0,\ s+2t \leqq 1$
を満たしながら変化するとき、
$\overrightarrow{ OP }=s\ \overrightarrow{ OA }+t\ \overrightarrow{ OB }$
で定まる点Pの存在する範囲の面積は$\frac{\sqrt{\boxed{\ \ ク\ \ }}}{\boxed{\ \ ケ\ \ }}$
である。

2021青山学院大学理工学部過去問
この動画を見る 

【数C】【平面上のベクトル】ベクトルの基本計算3 ※問題文は概要欄

アイキャッチ画像
単元: #平面上のベクトル#平面上のベクトルと内積#数学(高校生)#数C
教材: #4S数学#中高教材#4S数学CのB問題解説#平面上のベクトル
指導講師: 理数個別チャンネル
問題文全文(内容文):
平行四辺形ABCDの辺$\overrightarrow{ AB }=\vec{ a }$,$\overrightarrow{ AD }=\vec{ b }$ , $\overrightarrow{ AE }=\vec{ u }$ ,$\overrightarrow{ AF }=\vec{ v }$ とするとき、$\vec{ a }$ ,$\vec{ b }$ を $\vec{ u }$ ,$\vec{ v }$ を用いて表せ。


BCの中点をE、辺CD上の点でCF:FD=3:2 を満たす点をFとする。
この動画を見る 
PAGE TOP