【高校数学】 数B-46 位置ベクトルと図形② - 質問解決D.B.(データベース)

【高校数学】 数B-46 位置ベクトルと図形②

問題文全文(内容文):
①四面体$OABC$がある.
線分$AB$を$1:2$に内分する点を$D$,線分$BC$の中点を$E$とする.
線分$AE$と線分$CD$の交点を$P$とするとき,
$\overrightarrow{OP}$を$\overrightarrow{OA}=\large{\overrightarrow{a}},\overrightarrow{OB}=\large{\overrightarrow{b}},\overrightarrow{OC}=\large{\overrightarrow{c}}$を用いて表そう.
単元: #平面上のベクトル#平面上のベクトルと内積#ベクトルと平面図形、ベクトル方程式#数学(高校生)#数C
指導講師: とある男が授業をしてみた
問題文全文(内容文):
①四面体$OABC$がある.
線分$AB$を$1:2$に内分する点を$D$,線分$BC$の中点を$E$とする.
線分$AE$と線分$CD$の交点を$P$とするとき,
$\overrightarrow{OP}$を$\overrightarrow{OA}=\large{\overrightarrow{a}},\overrightarrow{OB}=\large{\overrightarrow{b}},\overrightarrow{OC}=\large{\overrightarrow{c}}$を用いて表そう.
投稿日:2016.01.11

<関連動画>

【高校数学】数Ⅲ-46 極座標と極方程式③

アイキャッチ画像
単元: #平面上のベクトル#ベクトルと平面図形、ベクトル方程式#数学(高校生)#数C
指導講師: とある男が授業をしてみた
問題文全文(内容文):
$O$を極とする極座標において、
2点$A\left(2,\dfrac{\pi}{6}\right),B\left(4,\dfrac{5}{6}\pi\right)$がある。

①線分$AB$の長さを求めよ。

②$\triangle OAB$の面積を求めよ。
この動画を見る 

【数B】ベクトル:ベクトルの基本⑩三角形の面積の公式2パターン

アイキャッチ画像
単元: #平面上のベクトル#平面上のベクトルと内積#数学(高校生)#数C
指導講師: 理数個別チャンネル
問題文全文(内容文):
ベクトルを用いた三角形の面積の公式を解説していきます.
この動画を見る 

【基礎から解説】ベクトルをほかのベクトルで表す(高校数学B)

アイキャッチ画像
単元: #平面上のベクトル#平面上のベクトルと内積#数学(高校生)#数C
指導講師: 【ゼロから理解できる】高校数学・物理
問題文全文(内容文):
平行四辺形$ABCD$において、対角線の交点を$E$、辺$CD$上の点で$CF:FD=2:3$を満たす点を$F$とする。
$\overrightarrow{ AB }=\vec{ b },\overrightarrow{ AD }=\vec{ d },\overrightarrow{ AE }=\vec{ e },\overrightarrow{ AF }=\vec{ f }$とするとき、$\vec{ b },\vec{ d }$を$\vec{ e },\vec{ f }$を用いて表せ。
この動画を見る 

福田の入試問題解説〜北海道大学2022年理系第2問〜ベクトルと漸化式

アイキャッチ画像
単元: #大学入試過去問(数学)#平面上のベクトル#数列#平面上のベクトルと内積#漸化式#学校別大学入試過去問解説(数学)#数学(高校生)#北海道大学#数B#数C
指導講師: 福田次郎
問題文全文(内容文):
aは$a\neq 1$を満たす正の実数とする。xy平面上の点$P_1,P_2,\ldots\ldots,P_n,\ldots\ldots$および
$Q_1,Q_2,\ldots\ldots,Q_n,\ldots\ldots$が、すべての自然数nについて
$\overrightarrow{ P_nP_{n+1} }=(1-a)\overrightarrow{ P_nQ_n },  \overrightarrow{ Q_nQ_{n+1} }=(0, \frac{a^{-n}}{1-a})$
を満たしているとする。また$P_n$の座標を$(x_n,y_n)$とする。
(1)$x_{n+2}$を$a, x_n, x_{n+1}$で表せ。
(2)$x_1=0, x_2=1$のとき、数列$\left\{x_n\right\}$の一般項を求めよ。
(3)$y_1=\frac{a}{(1-a)^2}, y_2-y_1=1$のとき数列$\left\{y_n\right\}$の一般項を求めよ。

2022北海道大学理系過去問
この動画を見る 

【数C】【平面上のベクトル】ベクトル方程式1 ※問題文は概要欄

アイキャッチ画像
単元: #平面上のベクトル#ベクトルと平面図形、ベクトル方程式#数学(高校生)#数C
教材: #4S数学#中高教材#4S数学CのB問題解説#平面上のベクトル
指導講師: 理数個別チャンネル
問題文全文(内容文):
問題1
$\triangle ABC$の重心を$G$、辺$BC$の中点を$M$とし、$\overrightarrow{GA}=\vec{a}, \overrightarrow{GB}=\vec{b}$とする。
(1) $\overrightarrow{AM}$、$\overrightarrow{GC}$を$\vec{a}, \vec{b}$を用いて表せ。
(2)点$M$を通り、辺$CA$に平行な直線上の点を$P$とし、$\overrightarrow{GP}=\vec{p}$とする。この直線のベクトル方程式を、$\vec{a}, \vec{b}, \vec{p}$を用いて求めよ。

問題2
2直線 $l:(x,y)=(0,3)+s(1,2), m:(x,y)=(6,1)+t(-2,3)$について、次の問いに答えよ。ただし、$s,t$は媒介変数とする。
(1)$l$と$m$の交点の座標を求めよ。
(2)点$P(4,1)$から$l$に垂線$PQ$を下ろす。このとき、点$Q$の座標を求めよ。

問題3
$\triangle OAB$に対して、点$P$が次の条件を満たしながら動くとき、点$P$の存在範囲を図示せよ。
(1) $\overrightarrow{OP}=s\overrightarrow{OA}+t\overrightarrow{OB}, s+t=4, s\geqq0, t\geqq0$
(2) $\overrightarrow{OP}=s\overrightarrow{OA}+t\overrightarrow{OB}, 0\leqq s+t\leqq4, s\geqq0, t\geqq0$
この動画を見る 
PAGE TOP