問題文全文(内容文):
${\Large\boxed{1}}$ 点$O$を中心とする半径$r$の円周上に、2点$A,B$を$\angle AOB \lt \displaystyle \frac{\pi}{2}$となる
ようにとり、$\theta=\angle AOB$とおく。線分$AB$上に点$D$をとる。また、
点$P$は線分$OA$上を、点$Q$は線分$OB$上を動く。
(1)$a=OD$とおく。$DP+PQ+QD$の最小値を$a$と$\theta$で表せ。
(2)さらに点$D$が線分$AB$上を動くときの
$DP+PQ+QD$の最小値を$r$と$\theta$で表せ。
一橋大学過去問
${\Large\boxed{1}}$ 点$O$を中心とする半径$r$の円周上に、2点$A,B$を$\angle AOB \lt \displaystyle \frac{\pi}{2}$となる
ようにとり、$\theta=\angle AOB$とおく。線分$AB$上に点$D$をとる。また、
点$P$は線分$OA$上を、点$Q$は線分$OB$上を動く。
(1)$a=OD$とおく。$DP+PQ+QD$の最小値を$a$と$\theta$で表せ。
(2)さらに点$D$が線分$AB$上を動くときの
$DP+PQ+QD$の最小値を$r$と$\theta$で表せ。
一橋大学過去問
単元:
#数Ⅱ#大学入試過去問(数学)#三角関数#学校別大学入試過去問解説(数学)#一橋大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$ 点$O$を中心とする半径$r$の円周上に、2点$A,B$を$\angle AOB \lt \displaystyle \frac{\pi}{2}$となる
ようにとり、$\theta=\angle AOB$とおく。線分$AB$上に点$D$をとる。また、
点$P$は線分$OA$上を、点$Q$は線分$OB$上を動く。
(1)$a=OD$とおく。$DP+PQ+QD$の最小値を$a$と$\theta$で表せ。
(2)さらに点$D$が線分$AB$上を動くときの
$DP+PQ+QD$の最小値を$r$と$\theta$で表せ。
一橋大学過去問
${\Large\boxed{1}}$ 点$O$を中心とする半径$r$の円周上に、2点$A,B$を$\angle AOB \lt \displaystyle \frac{\pi}{2}$となる
ようにとり、$\theta=\angle AOB$とおく。線分$AB$上に点$D$をとる。また、
点$P$は線分$OA$上を、点$Q$は線分$OB$上を動く。
(1)$a=OD$とおく。$DP+PQ+QD$の最小値を$a$と$\theta$で表せ。
(2)さらに点$D$が線分$AB$上を動くときの
$DP+PQ+QD$の最小値を$r$と$\theta$で表せ。
一橋大学過去問
投稿日:2018.05.22