福田の一夜漬け数学〜折れ線の最小(4)〜受験編、一橋大学の問題に挑戦! - 質問解決D.B.(データベース)

福田の一夜漬け数学〜折れ線の最小(4)〜受験編、一橋大学の問題に挑戦!

問題文全文(内容文):
${\Large\boxed{1}}$ 点$O$を中心とする半径$r$の円周上に、2点$A,B$を$\angle AOB \lt \displaystyle \frac{\pi}{2}$となる
ようにとり、$\theta=\angle AOB$とおく。線分$AB$上に点$D$をとる。また、
点$P$は線分$OA$上を、点$Q$は線分$OB$上を動く。
(1)$a=OD$とおく。$DP+PQ+QD$の最小値を$a$と$\theta$で表せ。
(2)さらに点$D$が線分$AB$上を動くときの
$DP+PQ+QD$の最小値を$r$と$\theta$で表せ。

一橋大学過去問
単元: #数Ⅱ#大学入試過去問(数学)#三角関数#学校別大学入試過去問解説(数学)#一橋大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$ 点$O$を中心とする半径$r$の円周上に、2点$A,B$を$\angle AOB \lt \displaystyle \frac{\pi}{2}$となる
ようにとり、$\theta=\angle AOB$とおく。線分$AB$上に点$D$をとる。また、
点$P$は線分$OA$上を、点$Q$は線分$OB$上を動く。
(1)$a=OD$とおく。$DP+PQ+QD$の最小値を$a$と$\theta$で表せ。
(2)さらに点$D$が線分$AB$上を動くときの
$DP+PQ+QD$の最小値を$r$と$\theta$で表せ。

一橋大学過去問
投稿日:2018.05.22

<関連動画>

中学生も解ける!?指数方程式

アイキャッチ画像
単元: #数A#数Ⅱ#整数の性質#ユークリッド互除法と不定方程式・N進法#指数関数と対数関数#指数関数#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
$2^{x-1}= 2^x-2^1$
この動画を見る 

積分区間は0→π/4です。大学入試問題#900「減点ポイント多い問題」 #横浜国立大学後期(2023)

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#学校別大学入試過去問解説(数学)#不定積分・定積分#横浜国立大学#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
$n$を正の整数とする。
関数$F(x)=\displaystyle \int_{0}^{\frac{\pi}{2}} \displaystyle \frac{2e^x\cos t\sin t}{(\cos^2t+x^n\sin^2t)^2} dt$
について、次の問いに答えよ。
ただし、$x \gt 0$とする。
1.$F(x)$を求めよ。
2.$F(x)$が極値をもつ最小の$n$の値を求めよ。

出典:2023年横浜国立大学後期
この動画を見る 

【高校数学】  数Ⅱ-9  分数式の計算②

アイキャッチ画像
単元: #数Ⅱ#式と証明#整式の除法・分数式・二項定理#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
◎計算しよう。

①$\displaystyle \frac{x-5}{x-3}+\displaystyle \frac{2x-4}{x-3}$

②$\displaystyle \frac{x}{x+4}-\displaystyle \frac{2}{x-1}$

③$\displaystyle \frac{x+8}{x^2+x-2}+\displaystyle \frac{x-4}{x^2-x}$
この動画を見る 

4次方程式 実数解4つ

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$\displaystyle \frac{x-8}{x-1}+\displaystyle \frac{x-7}{x-2}+\displaystyle \frac{x-6}{x-3}+\displaystyle \frac{x-5}{x-4}=-4$
実数解4つ求めよ
この動画を見る 

【有名問題】京都大学の伝説の問題です【数学 入試問題】

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#集合と命題(集合・命題と条件・背理法)#三角関数#加法定理とその応用#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
$ tan1°$は有理数か?

数学入試問題過去問
この動画を見る 
PAGE TOP