大学入試問題#705「時間と根性が削られる」 自治医科大学(2023) - 質問解決D.B.(データベース)

大学入試問題#705「時間と根性が削られる」 自治医科大学(2023)

問題文全文(内容文):
$\beta=\sqrt[ 3 ]{ 7+5\sqrt{ 2 } }$であるとき、
$\beta^4-12\beta$の値を求めよ。

出典:2023年自治医科大学 入試問題
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#数学(高校生)#自治医科大学
指導講師: ますただ
問題文全文(内容文):
$\beta=\sqrt[ 3 ]{ 7+5\sqrt{ 2 } }$であるとき、
$\beta^4-12\beta$の値を求めよ。

出典:2023年自治医科大学 入試問題
投稿日:2024.01.15

<関連動画>

福田の数学〜京都大学2023年文系第3問〜半径1の円に内接する正五角形の一辺の長さの計量

アイキャッチ画像
単元: #数Ⅰ#数A#大学入試過去問(数学)#図形の性質#図形と計量#三角比(三角比・拡張・相互関係・単位円)#三角比への応用(正弦・余弦・面積)#周角と円に内接する四角形・円と接線・接弦定理#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{3}$(1)$\cos 2\theta$と$\cos 3\theta$を$\cos\theta$の式として表せ。
(2)半径1の円に内接する正五角形の一辺の長さが1.15より大きいな否かを理由をつけて判定せよ。

2023京都大学文系過去問
この動画を見る 

約数の基本問題

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#数学(高校生)#大阪医科大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
大阪医科薬(看)

600の正の約数のうち偶数であるものの総和を求めよ.
この動画を見る 

福田の数学〜慶應義塾大学2022年環境情報学部第3問〜4次関数のグラフの接線と囲まれた面積

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#微分法と積分法#指数関数#学校別大学入試過去問解説(数学)#不定積分・定積分#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\large\boxed{3}}$xy平面上の曲線Cを$y=x^2(x-1)(x+2)$とする。
(1)Cに2点で下から接する直線Lの方程式は

$y=\frac{\boxed{\ \ アイウ\ \ }}{\boxed{\ \ エオカ\ \ }}\ x+\frac{\boxed{\ \ キクケ\ \ }}{\boxed{\ \ コサシ\ \ }}$である。

(2)CとLが囲む図の斜線部分の面積(※動画参照)は

$\frac{\boxed{\ \ スセソ\ \ }\sqrt{\boxed{\ \ タチツ\ \ }}}{\boxed{\ \ テトナ\ \ }}$となる。

ただし、次の公式を使ってもかまわない(m,nは正の整数)
$\int_{\alpha}^{\beta}(x-\alpha)^m(x-\beta)^ndx=\frac{(-1)^nm!n!}{(m+n+1)!}(\beta-\alpha)^{m+n+1}$

2022慶應義塾大学環境情報学部過去問
この動画を見る 

慶應(医)虚数係数の二次方程式の2解の距離

アイキャッチ画像
単元: #大学入試過去問(数学)#複素数平面#複素数平面#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数C
指導講師: 鈴木貫太郎
問題文全文(内容文):
$4Z^2+4Z-\sqrt3 i=0$の2つの解の複素数平面上の距離を求めよ.

慶應(医)過去問
この動画を見る 

近畿大(医)お知らせもあるよ

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#対数関数#学校別大学入試過去問解説(数学)#近畿大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$\log_{10} 5$
の小数第二位を求めよ
この動画を見る 
PAGE TOP