正八角形 大阪教育大学附属天王寺 予告問題Fが一個多かったです。申し訳ございませんでした。 - 質問解決D.B.(データベース)

正八角形  大阪教育大学附属天王寺 予告問題Fが一個多かったです。申し訳ございませんでした。

問題文全文(内容文):
正八角形
斜線部の面積を求めよ
*図は動画内参照

大阪教育大学附属高等学校天王寺校舎
単元: #数学(中学生)#中2数学#三角形と四角形#高校入試過去問(数学)
指導講師: 数学を数楽に
問題文全文(内容文):
正八角形
斜線部の面積を求めよ
*図は動画内参照

大阪教育大学附属高等学校天王寺校舎
投稿日:2022.06.24

<関連動画>

中2数学「平行線と面積②(等積変形の作図)」【毎日配信】

アイキャッチ画像
単元: #数学(中学生)#中2数学#三角形と四角形
指導講師: 中学受験算数・高校受験数学けいたくチャンネル
問題文全文(内容文):
例1
下の図の四角形$ABCD$で,辺$BC$を$C$の方に延長した直線上に点$E$をとり,
四角形$ABCD$と面積が等しい$\triangle ABC$を書きなさい.

例2
下の図のように,折れ線$PQR$を境界とする2つの土地があります.
それぞれの土地の面積を考えないで,境界を点$P$を通る線分にあらためるとき,
点$P$を通る線分を書きなさい.
この動画を見る 

【3分で解ける!考える力倍増⁉】連立方程式:城北高等学校~全国入試問題解法

アイキャッチ画像
単元: #数学(中学生)#中2数学#連立方程式#高校入試過去問(数学)#城北高等学校
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
入試問題 城北高等学校

連立方程式を解け。
$\begin{eqnarray}
\left\{
\begin{array}{l}
x - y = \sqrt{ 5 } \\
x^2 - y^2 = 15
\end{array}
\right.
\end{eqnarray}$
この動画を見る 

【高校受験対策】数学-規則性6

アイキャッチ画像
単元: #数学(中学生)#中2数学#連立方程式
指導講師: とある男が授業をしてみた
問題文全文(内容文):
図1のような、縦$acm$、横$bcm$の長方形の紙がある。
この長方形の紙に対して次のような【操作】を行う。ただし$a$、$b$は正の整数であり、$a \lt b$とする。

【操作】
長方形の紙から短い方の辺を1辺とする正方形を切り取る。
残った四角形が正方形でない場合には、その四角形からさらに同様の方法で正方形を切り取り、残った四角形が正方形になるまで繰り返す。

例えば、図2のように、$a$=3、$ b$=4の長方形の紙に対して【操作】を行うと、1辺3cmの正方形の紙が1枚、1辺1cmの正方形の紙が3枚、全部で4枚の正方形ができる。
このとき次の問1、間2、間3、間4に答えなさい。


問1
$a$=4、$b$=6の長方形の紙に対して【操作】を行ったとき、できた正方形のうち最も小さい正方形の 1辺の長さを求めなさい。

問2
$n$を正の整数とする。$a=n$、$b=3n+1$の長方形の紙に対して【操作】を行ったとき、正方形は全部で何枚できるか。$n$を用いて表しなさい。

問3
ある長方形の紙に対して【操作】を行ったところ、3種類の大きさの異なる正方形が全部で4枚できた。
これらの正方形は、1辺の長さが長い順に、12cmの正方形が1枚、$x$cmの正方形が1枚、$y$cmの正方形が2枚であった。
このとき、$x$、$y$の連立方程式をつくり、$x$、$y$の値を求めなさい。ただし、 途中の計算も書くこと。

問4
$b=56$の長方形の紙に対して【操作】を行ったところ、3種類の大きさの異なる正方形が全で5枚できた。このとき考えられる$a$の値をすべて求めなさい。
この動画を見る 

直角三角形の回転移動 國學院栃木

アイキャッチ画像
単元: #数学(中学生)#中2数学#三角形と四角形#高校入試過去問(数学)
指導講師: 数学を数楽に
問題文全文(内容文):
Cを中心に90°回転
辺ABが通過した面積=?
*図は動画内参照

國學院大學栃木高等学校
この動画を見る 

【一本道が見えますか】連立方程式:巣鴨高等学校~全国入試問題解法

アイキャッチ画像
単元: #数学(中学生)#中2数学#連立方程式#高校入試過去問(数学)
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
2つの連立方程式
$ \begin{eqnarray}
\left\{
\begin{array}{l}
3x + 2y = 14 \\
ax + by = 3
\end{array}
\right.
\end{eqnarray}$

$\begin{eqnarray}
\left\{
\begin{array}{l}
bx -ay = -5 \\
4x-5y = 11
\end{array}
\right.
\end{eqnarray}$
の解が一致するとき$a,b$の値をそれぞれ求めなさい.

巣鴨高校過去問

この動画を見る 
PAGE TOP