福田の数学〜早稲田大学2025教育学部第3問〜楕円と接線 - 質問解決D.B.(データベース)

福田の数学〜早稲田大学2025教育学部第3問〜楕円と接線

問題文全文(内容文):

$\boxed{3}$

座標平面上で、

点$H(0,2\sqrt2)$から楕円$C:x^2+2y^2=8$へ引いた

$2$つの接線を$L_1,L_2$とし、$L_1,L_2$と$C$との

共有点をそれぞれ$P_1,P_2$とする。

ただし、$P_1$の$x$座標は正であるとする。

次の問いに答えよ。

(1)直線$L_1$と$L_2$それぞれの傾きを求めよ。

(2)$2$点$P_1,P_2$を通る直線を$L_3$とする。

直線$L_3$と楕円$C$で囲まれた$2$つの部分のうち、

直線$L_3$の上側にある方の面積を求めよ。

$2025$年早稲田大学教育学部過去問題
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):

$\boxed{3}$

座標平面上で、

点$H(0,2\sqrt2)$から楕円$C:x^2+2y^2=8$へ引いた

$2$つの接線を$L_1,L_2$とし、$L_1,L_2$と$C$との

共有点をそれぞれ$P_1,P_2$とする。

ただし、$P_1$の$x$座標は正であるとする。

次の問いに答えよ。

(1)直線$L_1$と$L_2$それぞれの傾きを求めよ。

(2)$2$点$P_1,P_2$を通る直線を$L_3$とする。

直線$L_3$と楕円$C$で囲まれた$2$つの部分のうち、

直線$L_3$の上側にある方の面積を求めよ。

$2025$年早稲田大学教育学部過去問題
投稿日:2025.07.22

<関連動画>

【数Ⅱ】図形と方程式:円:円と方程式:円の外にある点から、円に接するような直線を引け!

アイキャッチ画像
単元: #数Ⅱ#図形と方程式#円と方程式#数学(高校生)
教材: #PRIME数学#PRIME数学Ⅱ・B#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
点(2, 6)を通り,円x²+y²=20 に接する直線の方程式を求めよ。
この動画を見る 

【高校数学】毎日積分76日目~47都道府県制覇への道~【⑲大阪】【毎日17時投稿】

アイキャッチ画像
単元: #数Ⅱ#微分法と積分法#不定積分・定積分#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
■【大阪大学 2023】
$n$を2以上の自然数とする。
(1)$0\leqq x\leqq 1$の時、次の不等式が成り立つことを示せ。
$\dfrac{1}{2}x^n\leqq (-1)^n\left[\dfrac{1}{x+1}-1-\displaystyle \sum_{k=2}^n(-1)^{k-1}\right]\leqq x^n-\dfrac{1}{2}x^{n+1}$
(2)$a_n=\displaystyle \sum_{k=1}^n\dfrac{(-1)^{k-1}}{k}$とするとき、次の極限値を求めよ。
$\lim_{n\to\infty}(-1)^n n(a_n-\log 2)$
この動画を見る 

福田の数学〜筑波大学2024理系第6問〜純虚数となる条件と複素数平面上の点

アイキャッチ画像
単元: #数Ⅱ#複素数平面#複素数平面#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
定数$\alpha$は実数でない複素数とする。以下の問いに答えよ。

(1) $\dfrac{\alpha - | \alpha|}{\alpha + | \alpha|} $は純虚数であることを示せ。

(2) 純虚数$\beta$で$\dfrac{\beta - | \alpha|}{\alpha + | \alpha|}$が純虚数となるものがただ1つ存在することを示せ。

(3) 複素数$z$を$\dfrac{z - | \alpha|}{\alpha + | \alpha|}$が純虚数となるように動かすとき、$|z|$が最小となる$z$を$\alpha$を用いて示せ。
この動画を見る 

【数Ⅱ】【微分法と積分法】微分の基本6 ※問題文は概要欄

アイキャッチ画像
単元: #数Ⅱ#微分法と積分法#平均変化率・極限・導関数#数学(高校生)
教材: #4S数学#4S数学Ⅱ+BのB問題解説(新課程2022年以降)#微分法と積分法#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
$k$は0ではない定数とする。次の等式を満たす2次関数$f(x)$を求めよ。
$f(x)-x^2f'(x)=k^2x^3-kx+5$
この動画を見る 

【保存版】相加平均・相乗平均の覚え方

アイキャッチ画像
単元: #数Ⅱ#図形の性質#式と証明#周角と円に内接する四角形・円と接線・接弦定理#恒等式・等式・不等式の証明#その他#数学(高校生)#参考書紹介
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
【保存版】相加平均・相乗平均の覚え方
※問題は動画内参照
この動画を見る 
PAGE TOP