2次関数 グラフと2次不等式4【ホーン・フィールドがていねいに解説】 - 質問解決D.B.(データベース)

2次関数 グラフと2次不等式4【ホーン・フィールドがていねいに解説】

問題文全文(内容文):
2次関数$y=x^2+mx+2$が次の条件を満たすように、定数$m$の値の範囲を定めよ。
(1)この2次関数のグラフと$x$軸の正の部分が異なる2点で交わる。
(2)この2次関数のグラフと$x$軸の$x\lt -1$の部分が異なる2点で交わる。

放物線$y=x^2+2(m-1)x+5-m^2$が$x$軸の正の部分と負の部分のそれぞれと交わるように、定数$m$の値の範囲を定めよ。

2次方程式$x^2+2mx+2m+3=0$が次のような実数解をもつように、定数$m$の値の範囲を定めよ。
(1)異なる2つの負の解
(2)-4より大きい異なる2つの解
チャプター:

0:00 オープニング
0:04 問題1(1)の解説
3:53 問題1(2)の解説
6:40 問題2の解説
8:59 問題3(1)の解説
11:16 問題3(2)の解説

単元: #数Ⅰ#2次関数#2次関数とグラフ#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
2次関数$y=x^2+mx+2$が次の条件を満たすように、定数$m$の値の範囲を定めよ。
(1)この2次関数のグラフと$x$軸の正の部分が異なる2点で交わる。
(2)この2次関数のグラフと$x$軸の$x\lt -1$の部分が異なる2点で交わる。

放物線$y=x^2+2(m-1)x+5-m^2$が$x$軸の正の部分と負の部分のそれぞれと交わるように、定数$m$の値の範囲を定めよ。

2次方程式$x^2+2mx+2m+3=0$が次のような実数解をもつように、定数$m$の値の範囲を定めよ。
(1)異なる2つの負の解
(2)-4より大きい異なる2つの解
投稿日:2023.08.09

<関連動画>

福田の数学〜慶應義塾大学2023年看護医療学部第2問(2)〜ルートが自然数になる条件

アイキャッチ画像
単元: #数Ⅰ#数A#大学入試過去問(数学)#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#整数の性質#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{2}$ (2)$n$を自然数とする。$\sqrt{\frac{200}{\sqrt n}}$が自然数となるような$n$をすべて求めると$n$=$\boxed{\ \ サ\ \ }$である。

2023慶應義塾大学看護医療学部過去問
この動画を見る 

【数Ⅰ】数と式:繁分数① 次の式を簡単にしよう。{(a+x)/(a-x)-(a-x)/(a+x)}/{(a+x)/(a-x)+(a-x)/(a+x)}

アイキャッチ画像
単元: #数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
次の式を簡単にしよう。
$\dfrac{\dfrac{a+x}{a-x}-\dfrac{a-x}{a+x}}{\dfrac{a+x}{a-x}+\dfrac{a-x}{a+x}}$
この動画を見る 

ナイスな連立方程式

アイキャッチ画像
単元: #数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
これを解け.x,yを正の実数とする.
$\begin{eqnarray}
\left\{
\begin{array}{l}
x\sqrt x+y\sqrt y=32 \\
x\sqrt y+y\sqrt x=31
\end{array}
\right.
\end{eqnarray}$
この動画を見る 

【高校数学】2次関数の最大最小例題~定義域の片方に文字~ 2-4.5【数学Ⅰ】

アイキャッチ画像
単元: #数Ⅰ#2次関数#2次関数とグラフ#数学(高校生)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
$a \gt 0$とする。
関数$y=x^2-4x+5(0 \leqq x \leqq a)$について

(1) 最大値を求めよ

(2) 最小値を求めよ
この動画を見る 

定理・公式の使い方を整理!】三角比の定理の使い方を総整理!〔高校数学 数学〕

アイキャッチ画像
単元: #数Ⅰ#図形と計量#三角比(三角比・拡張・相互関係・単位円)#三角比への応用(正弦・余弦・面積)#数学(高校生)
指導講師: 3rd School
問題文全文(内容文):
1.$\tan θ=\sqrt{ 2 }$のとき、$\cosθ$と$sinθ$を求めなさい($θ$は鋭角)

2.次の三角比を$90^\circ$以下の角の三角比で表せ
(1)$sin110^\circ$ (2)$cos120^\circ$ (3)$tan130^\circ$


3.次の△ABCにおいて$a$の長さを求め、面積も求めなさい

※図は動画参照
この動画を見る 
PAGE TOP