【共通テスト】数学IA 第5問図形の性質を解説してみました(2023年本試)【この動画だけ絶望的にわかりにくい】 - 質問解決D.B.(データベース)

【共通テスト】数学IA 第5問図形の性質を解説してみました(2023年本試)【この動画だけ絶望的にわかりにくい】

問題文全文(内容文):
動画内手順1の(Step 1)と(Step 4)により、4点C,G,H,[ウ]は同一円周上にあることが分かる。
よって、$\angle CHG =$[エ]である。
一方、点Eは円Oの周上にあることから、[エ]=[オ]がわかる。
よって、$\angle CHG =$[オ]であるので、4点C,G,H,[カ]は同一円周上にある。
この円が点[ウ]を通ることにより、$\angle OEH =$[アイ]$^{ \circ }$を示すことができる。


[ウ]の解答群
⓪B
①D
②F
③O


[エ]の解答群
⓪$\angle AEC$
①$\angle CDF$
②$\angle CGH$
③$\angle CBO$
④$\angle FOG$


[オ]の解答群
⓪$\angle AED$
①$\angle ADE$
②$\angle BOE$
③$\angle DEG$
④$\angle EOH$


[カ]の解答群
⓪A
①D
②E
③F

-----------------
動画内手順2のとき、$\angle PTS =$[キ]である。
円Oの半径が$\sqrt{ 5 }$で、$OT=3 \sqrt{ 6 }$であったとすると、3点O,P,Rを通る円の半径は$\displaystyle \frac{[ク]\sqrt{ [ケ] }}{[コ]}$であり、RT=[サ]である。


[キ]の解答群
⓪$\angle PQS$
①$\angle PST$
②$\angle QPS$
③$\angle QRS$
④$\angle SRT$
単元: #数A#図形の性質#数学(高校生)
指導講師: カサニマロ【べんとう・ふきのとうの授業動画】
問題文全文(内容文):
動画内手順1の(Step 1)と(Step 4)により、4点C,G,H,[ウ]は同一円周上にあることが分かる。
よって、$\angle CHG =$[エ]である。
一方、点Eは円Oの周上にあることから、[エ]=[オ]がわかる。
よって、$\angle CHG =$[オ]であるので、4点C,G,H,[カ]は同一円周上にある。
この円が点[ウ]を通ることにより、$\angle OEH =$[アイ]$^{ \circ }$を示すことができる。


[ウ]の解答群
⓪B
①D
②F
③O


[エ]の解答群
⓪$\angle AEC$
①$\angle CDF$
②$\angle CGH$
③$\angle CBO$
④$\angle FOG$


[オ]の解答群
⓪$\angle AED$
①$\angle ADE$
②$\angle BOE$
③$\angle DEG$
④$\angle EOH$


[カ]の解答群
⓪A
①D
②E
③F

-----------------
動画内手順2のとき、$\angle PTS =$[キ]である。
円Oの半径が$\sqrt{ 5 }$で、$OT=3 \sqrt{ 6 }$であったとすると、3点O,P,Rを通る円の半径は$\displaystyle \frac{[ク]\sqrt{ [ケ] }}{[コ]}$であり、RT=[サ]である。


[キ]の解答群
⓪$\angle PQS$
①$\angle PST$
②$\angle QPS$
③$\angle QRS$
④$\angle SRT$
投稿日:2023.12.28

<関連動画>

東大 レピュニット数

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#数列#数学的帰納法#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
$\overbrace{ 1111 + \cdots +11}^{3^n桁}$は$3^n$で割り切れるが
$3^{n+1}$では割り切れないことを示せ.

東大過去問
この動画を見る 

福田の数学〜東京慈恵会医科大学2023年医学部第3問〜無理数である証明

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#大学入試過去問(数学)#数と式#式と証明#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#数学(高校生)#東京慈恵会医科大学
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{3}$ Oを原点とする座標平面において、第1象限に属する点P($\sqrt 2r$, $\sqrt 3s$)(r,sは有理数)をとるとき、線分OPの長さは無理数となることを示せ。

2023東京慈恵会医科大学医学部過去問
この動画を見る 

茨城大 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #数A#数Ⅱ#大学入試過去問(数学)#複素数と方程式#整数の性質#約数・倍数・整数の割り算と余り・合同式#解と判別式・解と係数の関係#学校別大学入試過去問解説(数学)#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
茨城大学過去問題
$n \geqq 2$  整数
(x+1)(x+2)(x+3)・・・(x+n)
(1)$x^{n-1}$の係数
(2)$x^{n-2}$の係数
この動画を見る 

変な指数方程式

アイキャッチ画像
単元: #数A#整数の性質#ユークリッド互除法と不定方程式・N進法#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
これを解け.$(x\gt 0)$
$x^x=\left(\dfrac{256}{625}\right)^{\frac{256}{625}}$
この動画を見る 

難関中入試に出そうな問題

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
1×3×5×7・・・×999
=$3^nP(P\not\equiv 0 \mod 3)$
nの値を求めよ.
この動画を見る 
PAGE TOP