【数B】数列:等比数列の和 公比が4、第10項が4096である等比数列の初項を求めよ。 - 質問解決D.B.(データベース)

【数B】数列:等比数列の和 公比が4、第10項が4096である等比数列の初項を求めよ。

問題文全文(内容文):
第1項から第10項までの和が4、第1項から第20項までの和が24のとき、第1項から第40項までの和を求めよ。
チャプター:

0:00 オープニング
0:08 問題の概要
1:50 辺々割ってみる
5:34 まとめ
6:34 エンディング

単元: #数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師: 理数個別チャンネル
問題文全文(内容文):
第1項から第10項までの和が4、第1項から第20項までの和が24のとき、第1項から第40項までの和を求めよ。
投稿日:2023.03.03

<関連動画>

【高校数学】数列の基礎・言葉の確認~知らないとヤバい知識~ 3-1【数学B】

アイキャッチ画像
単元: #数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
1,4,9,16,25…この一般項を求めよ。
この動画を見る 

福田の数学〜慶應義塾大学2024年薬学部第1問(1)〜等差数列と等比中項

アイキャッチ画像
単元: #数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{1}$ (1)$n$を自然数とする。数列$\left\{a_n\right\}$は初項が25, 公差が0でない等差数列であり、3つの項$a_8$, $a_9$, $a_{10}$を
$a_9$, $a_{10}$, $a_8$
の順に並べると等比数列になる。この数列の初項から第$n$項までの和を$S_n$とする。
(i)一般項$a_n$を$n$の式で表すと$a_n$=$\boxed{\ \ ア\ \ }$である。
(ii)不等式$S_n$<0 を満たす最小の$n$の値は$\boxed{\ \ イ\ \ }$である。
この動画を見る 

【高校数学】等差数列の性質~等差数列の証明と等差中項~ 3-3【数学B】

アイキャッチ画像
単元: #数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
a,6,2aが等差数列のとき、aの値を求めよ
この動画を見る 

福田の数学〜早稲田大学2024年理工学部第4問〜確率漸化式

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#早稲田大学#数B
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{4}$ 2つのチーム$W$, $K$が$n$回試合を行う。ただし$n$≧2とする。各試合での$W$, $K$それぞれの勝つ確率は$\displaystyle\frac{1}{2}$とし、引き分けはないものとする。$W$が連敗しない確率を$p_n$とする。ただし、連敗とは2回以上続けて負けることを言う。
(1)$p_3$を求めよ。
(2)$p_{n+2}$を$p_{n+1}$と$p_n$を用いて表せ。
(3)以下の2式を満たす$\alpha$, $\beta$を求めよ。ただし、$\alpha$<$\beta$とする。
$p_{n+2}$-$\beta p_{n+1}$=$\alpha (p_{n+1}-\beta p_n)$
$p_{n+2}$-$\alpha p_{n+1}$=$\beta (p_{n+1}-\alpha p_n)$
(4)$p_n$ を求めよ。
この動画を見る 

漸化式と整数の融合問題

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数列#漸化式#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
$a_1=2$,$a_{n+1}=2^{n^2+2n-1}・a^2_n$
$a_n$の1の位が2になるのは$a_1$のみであることを示せ.

この動画を見る 
PAGE TOP