【数B】数列:等比数列の和 公比が4、第10項が4096である等比数列の初項を求めよ。 - 質問解決D.B.(データベース)

【数B】数列:等比数列の和 公比が4、第10項が4096である等比数列の初項を求めよ。

問題文全文(内容文):
第1項から第10項までの和が4、第1項から第20項までの和が24のとき、第1項から第40項までの和を求めよ。
チャプター:

0:00 オープニング
0:08 問題の概要
1:50 辺々割ってみる
5:34 まとめ
6:34 エンディング

単元: #数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師: 理数個別チャンネル
問題文全文(内容文):
第1項から第10項までの和が4、第1項から第20項までの和が24のとき、第1項から第40項までの和を求めよ。
投稿日:2023.03.03

<関連動画>

福田の数学〜慶應義塾大学2023年薬学部第1問(5)〜確率漸化式の基本

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#数列#漸化式#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{1}$ (5)地点Aと地点Bがあり、Kさんは時刻0に地点Aにいる。Kさんは1秒ごとに以下の確率で移動し、時刻0からn秒後に地点Aか地点Bにいる。
$\left\{\begin{array}{1}
・地点Aにいるとき\\
\frac{1}{2}の確率で地点Aにとどまり、\frac{1}{2}の確率で地点Bに移動する。\\
・地点Bにいるとき
\frac{1}{6}の確率で地点Bにとどまり、\frac{5}{6}の確率で地点Aに移動する。\\
\end{array}\right.$
Kさんが時刻0からn秒後に地点Aにいる確率を$a_n$、地点Bにいる確率を$b_n$で表す。ただし、nは0以上の整数とする。
(i)$a_{n+1}$を$a_n$と$b_n$で表すと$a_{n+1}$=$\boxed{\ \ サ\ \ }$$a_n$+$\boxed{\ \ シ\ \ }$$b_n$であり、$a_4$=$\boxed{\ \ ス\ \ }$
(ii)数列{$a_n$}の一般項$a_n$をnの式で表すと$\boxed{\ \ セ\ \ }$である。

2023慶應義塾大学薬学部過去問
この動画を見る 

【数B】数列:2以上の自然数に対して、y=x²,y=-x²+2nxで囲まれる部分に含まれる格子点の個数をnの式で表そう。ただし、境界線も含む。

アイキャッチ画像
単元: #数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
2以上の自然数に対して、$y=x^2,y=-x^2+2nx$で囲まれる部分に含まれる格子点の個数をnの式で表そう。ただし、境界線も含む。
この動画を見る 

【数B】数列:Σを使った等比数列の和の考え方

アイキャッチ画像
単元: #数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
Σの式を見てどう使うかを練習しましょう!!
この動画を見る 

漸化式 数列

アイキャッチ画像
単元: #数列#数列とその和(等差・等比・階差・Σ)#漸化式#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
$a_2=3$
$2S_n=(n+1)a_n-(n-1)$
{$a_n$}の一般項を求めよ
この動画を見る 

最速。2020年センター試験解説。福田の入試問題解説〜2020年センター試験IIB第3問〜数列と漸化式、余りの問題

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#数列#数列とその和(等差・等比・階差・Σ)#漸化式#センター試験・共通テスト関連#センター試験#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
${\large第3問}$
数列$\left\{a_n\right\}$は、初項$a_1$が$0$であり、$n=1,2,3,\cdots$のとき次の漸化式を
満たすものとする。
$a_{n+1}=\displaystyle \frac{n+3}{n+1}\left\{3a_n+3^{n+1}-(n+1)(n+2)\right\}$ $\cdots$①

(1)$a_2=\boxed{\ \ ア\ \ }$ である。

(2)$b_n=\displaystyle \frac{a_n}{3^n(n+1)(n+2)}$とおき、数列$\left\{b_n\right\}$の一般項を求めよう。
$\left\{b_n\right\}$の初項$b_1$は$\boxed{\ \ イ\ \ }$である。①の両辺を$3^{n+1}(n+2)(n+3)$で
割ると
$b_{n+1}=b_n+\displaystyle \frac{\boxed{\ \ ウ\ \ }}{\left(n+\boxed{\ \ エ\ \ }\right)\left(n+\boxed{\ \ オ\ \ }\right)}-\left(\displaystyle \frac{1}{\boxed{\ \ カ\ \ }}\right)^{n+1}$

を得る。ただし、$\boxed{\ \ エ\ \ } \lt \boxed{\ \ オ\ \ }$とする。

したがって

$b_{n+1}-b_n=\left(\displaystyle \frac{\boxed{\ \ キ\ \ }}{n+\boxed{\ \ エ\ \ }}-\displaystyle \frac{\boxed{\ \ キ\ \ }}{n+\boxed{\ \ オ\ \ }}\right)-\left(\displaystyle \frac{1}{\boxed{\ \ カ\ \ }}\right)^{n+1}$
である。

$n$を2以上の自然数とするとき

$\displaystyle \sum_{k=1}^{n-1}\left(\displaystyle \frac{\boxed{\ \ キ\ \ }}{k+\boxed{\ \ エ\ \ }}-\displaystyle \frac{\boxed{\ \ キ\ \ }}{k+\boxed{\ \ オ\ \ }}\right)=\displaystyle \frac{1}{\boxed{\ \ ク\ \ }}\left(\displaystyle \frac{n-\boxed{\ \ ケ\ \ }}{n+\boxed{\ \ コ\ \ }}\right)$

$\displaystyle \sum_{k=1}^{n-1}\left(\displaystyle \frac{1}{\boxed{\ \ カ\ \ }}\right)^{k+1}=\displaystyle \frac{\boxed{\ \ サ\ \ }}{\boxed{\ \ シ\ \ }}-\displaystyle \frac{\boxed{\ \ ス\ \ }}{\boxed{\ \ セ\ \ }}\left(\displaystyle \frac{1}{\boxed{\ \ カ\ \ }}\right)^n$

が成り立つことを利用すると

$b_n=\displaystyle \frac{n-\boxed{\ \ ソ\ \ }}{\boxed{\ \ タ\ \ }\left(n+\boxed{\ \ チ\ \ }\right)}+\displaystyle \frac{\boxed{\ \ ス\ \ }}{\boxed{\ \ セ\ \ }}\left(\displaystyle \frac{1}{\boxed{\ \ カ\ \ }}\right)^n$

が得られる。これは$n=1$のときも成り立つ。

(3)(2)により、$\left\{a_n\right\}$の一般項は
$a_n=\boxed{\ \ ツ\ \ }^{n-\boxed{テ}}\left(n^2-\boxed{\ \ ト\ \ }\right)+\displaystyle \frac{\left(n+\boxed{\ \ ナ\ \ }\right)\left(n+\boxed{\ \ ニ\ \ }\right)}{\boxed{\ \ ヌ\ \ }}$

で与えられる。ただし、$\boxed{\ \ ナ\ \ } \lt \boxed{\ \ ニ\ \ }$とする。
このことから、すべての自然数$n$について、
$a_n$は整数となることが分かる。

(4)$k$を自然数とする。$a_{3k},a_{3k+1},a_{3k+2}$で割った余りはそれぞれ
$\boxed{\ \ ネ\ \ },$ $\boxed{\ \ ノ\ \ },$ $\boxed{\ \ ハ\ \ }$である。また、$\left\{a_n\right\}$の初項から
第2020項までの和を$3$で割った余りは$\boxed{\ \ ヒ\ \ }$である。

2020センター試験過去問
この動画を見る 
PAGE TOP