大学入試問題#764「よく作成できるもんです」 早稲田大学商学部(2024) #数列 - 質問解決D.B.(データベース)

大学入試問題#764「よく作成できるもんです」 早稲田大学商学部(2024) #数列

問題文全文(内容文):
$c$を1でない正の実数とする。
数列$\{a_n\}$が次の条件を満たしている。
$a_1=c,$
$(a_n)^{n+1}・(a_{n+1})^n=c^{-(2n+1)}$
このとき、一般項$a_n$を$c$を用いて表せ。

出典:2024年早稲田大学商学部 入試問題
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
$c$を1でない正の実数とする。
数列$\{a_n\}$が次の条件を満たしている。
$a_1=c,$
$(a_n)^{n+1}・(a_{n+1})^n=c^{-(2n+1)}$
このとき、一般項$a_n$を$c$を用いて表せ。

出典:2024年早稲田大学商学部 入試問題
投稿日:2024.03.14

<関連動画>

一橋大学(’94)微分 高校数学 Japanese university entrance exam questions

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#接線と増減表・最大値・最小値#学校別大学入試過去問解説(数学)#一橋大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
一橋大学'94過去問題
$y=x^3$と$y=x^2+x+c$
との両方に接する直線が4本あるようなcの範囲
この動画を見る 

福田の数学〜上智大学2022年理工学部第1問(3)〜定積分の計算

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#上智大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
${\large\boxed{1}}\ (3)\int_0^{\frac{2}{3}\pi}x\sin2xdx=\frac{\pi}{\boxed{イ}}+$
$\frac{\boxed{ウ}}{\boxed{エ}}\sqrt{\boxed{オ}}$である。

2022上智大理工学部過去問
この動画を見る 

重積分⑧-3【一般の変数変換】(高専数学 微積II,数検1級1次解析対応)

アイキャッチ画像
単元: #大学入試過去問(数学)#数学検定・数学甲子園・数学オリンピック等#積分とその応用#学校別大学入試過去問解説(数学)#数学検定#数学検定1級#数学(高校生)#数Ⅲ#高専(高等専門学校)
指導講師: ますただ
問題文全文(内容文):
$∬_De^{-(x+y)^2}dxdy$
$D:x \geqq 0 , y \geqq 0 , x+y \leqq 1$
この動画を見る 

福田の数学〜九州大学2024年理系第2問〜複素数平面と高次方程式の解

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#複素数#剰余の定理・因数定理・組み立て除法と高次方程式#数学(高校生)#九州大学
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{2}$ 整式$f(z)$=$z^6$+$z^4$+$z^2$+1
について、以下の問いに答えよ。
(1)$f(z)$=0 を満たす全ての複素数$z$に対して、|$z$|=1 が成り立つことを示せ。
(2)次の条件を満たす複素数$w$を全て求めよ。
条件:$f(z)$=0 を満たす全ての複素数$z$に対して
$f(wz)$=0 が成り立つ。
この動画を見る 

一橋大 整数問題 Japanese university entrance exam questions

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#一橋大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
一橋大学過去問題
(1)$n^3+1$が3で割り切れるnをすべて求めよ。
(2)$n^n+1$が3で割り切れるnをすべて求めよ。
(1)(2)ともにnは自然数
この動画を見る 
PAGE TOP