大阪大 漸化式 - 質問解決D.B.(データベース)

大阪大 漸化式

問題文全文(内容文):
$a_1=1$

$a_{n+1}\displaystyle \frac{na_n}{2+n(a_n+1)}$

一般項を求めよ

出典:大阪大学 過去問
単元: #大学入試過去問(数学)#数列#漸化式#大阪大学#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
$a_1=1$

$a_{n+1}\displaystyle \frac{na_n}{2+n(a_n+1)}$

一般項を求めよ

出典:大阪大学 過去問
投稿日:2019.08.13

<関連動画>

数学「大学入試良問集」【13−10 群数列とその戦略】を宇宙一わかりやすく

アイキャッチ画像
単元: #数列#数学(高校生)#数B
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
数列$1,1,3,1,3,5,1,3,5,7,1,3,5,7,9,1,・・・$において、次の問いに答えよ。
ただし、$k,m,n$は自然数とする。
(1)$k+1$回目に現れる1は第何項か。
(2)$m$回目に現れる17は第何項か。
(3)初項から$k+1$回目の1までの項の和を求めよ。
(4)初項から第$n$項までの和を$S_n$とするとき、$S_n \gt 1300$となる最小の$n$を求めよ。
この動画を見る 

【高校数学】 数B-99 数学的帰納法⑤

アイキャッチ画像
単元: #数列#数学的帰納法#数学(高校生)#数B
指導講師: とある男が授業をしてみた
問題文全文(内容文):
①$a_1=2,a_{n+1}=2-\dfrac{1}{a_n}(n-1,2,3,・・・)$で定義される
数列$\{a_n\}$について,一般項$a_n$を推測し,
それが正しいことを,数学的帰納法を用いて証明しよう.
この動画を見る 

福田の数学〜早稲田大学2024商学部第1問(2)〜不等式で決定される自然数の列

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
$n$を$2$以上の整数とし、$a_1,a_2,a_3,・・・,a_n$を正の整数とする。
$a_1=1,{a_{i+3}}^3\lt 27{a_i}^4(i=1,2,3,・・・,n-1)$
$\displaystyle \sum_{i=1}^{n-1}\frac{a_i}{a_{i+1}}=\frac{a_1}{a_{2}}+\frac{a_2}{a_{3}}+\frac{a_3}{a_{4}}+・・・+\frac{a_{n-1}}{a_{n}}\lt 1$
であるとき、$a_n$のとりうる値の最大値は?
この動画を見る 

【数B】数列:等比数列の和 公比が4、第10項が4096である等比数列の初項を求めよ。

アイキャッチ画像
単元: #数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師: 理数個別チャンネル
問題文全文(内容文):
第1項から第10項までの和が4、第1項から第20項までの和が24のとき、第1項から第40項までの和を求めよ。
この動画を見る 

福田のおもしろ数学353〜1が連続3^n個並ぶ数は3^nで割り切れることの証明

アイキャッチ画像
単元: #数列#数学的帰納法#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
$n$ は $0$ 以上の整数とする。$\underbrace{ 111\cdots111 }_{3^n 桁}$ は $3^n$ で割り切れるが、 $3^{n+1}$ で割り切れないことを証明してください。
この動画を見る 
PAGE TOP