【わかりやすく解説】定義域が定められている2次関数の最大最小(数学Ⅰ) - 質問解決D.B.(データベース)

【わかりやすく解説】定義域が定められている2次関数の最大最小(数学Ⅰ)

問題文全文(内容文):
次の定義域における関数$y=-x^2-2x+1$の最大値、最小値を求めよ。
(1)$-3 \leqq x \leqq 0$
(2)$1 \leqq x \leqq 2$
(3)$-2 \leqq x \leqq -1$
単元: #数Ⅰ#2次関数#2次関数とグラフ#数学(高校生)
指導講師: 【ゼロから理解できる】高校数学・物理
問題文全文(内容文):
次の定義域における関数$y=-x^2-2x+1$の最大値、最小値を求めよ。
(1)$-3 \leqq x \leqq 0$
(2)$1 \leqq x \leqq 2$
(3)$-2 \leqq x \leqq -1$
投稿日:2022.07.19

<関連動画>

福田の数学〜早稲田大学2022年人間科学部第1問(1)〜命題の真偽とカードの裏表

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#数と式#集合と命題(集合・命題と条件・背理法)#数列#数列とその和(等差・等比・階差・Σ)#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
${\large\boxed{1}}$(1)表面にアルファベットが、裏面には自然数が書かれている5枚のカードが、
次のように置かれている。

${\large\boxed{P}}\hspace{45pt}{\large\boxed{Q}}\hspace{45pt}{\large\boxed{1}}\hspace{45pt}{\large\boxed{3}}\hspace{45pt}{\large\boxed{6}}$

これら5枚のカードに対する命題「表面がアルファベットPならば、裏面は
素数である」の審議を調べるために、できるだけ少ない枚数のカードを裏返
して確認したい。左からn番目の位置にあるカードを裏返す必要があるとき
には$a_n=1$、必要のないときには$a_n=0$とするとき
$\sum_{k=1}^5 a_k2^{k-1}=\boxed{\ \ ア\ \ }$
である。

2022早稲田大学人間科学部過去問
この動画を見る 

福田のおもしろ数学090〜絶対値の付いた方程式が表す点の軌跡

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#図形と方程式#軌跡と領域#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
|$x^2$+$y^2$-1|+|$x^2$-$y^2$|=|$2x^2$-1| を満たす点($x$,$y$)の軌跡を図示せよ。
この動画を見る 

あえて2通りで解説してみた 因数分解 2024暁

アイキャッチ画像
単元: #数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
因数分解せよ
$x^2-1-xy-y$

2024暁高等学校
この動画を見る 

必要条件と十分条件【高校数学ⅠA】を宇宙一わかりやすく

アイキャッチ画像
単元: #数Ⅰ#数と式#集合と命題(集合・命題と条件・背理法)#数学(高校生)
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
$x,y,a,b$は実数とする。
次の[ア]~[ク]に当てはまるものを下の⓪~③の中から選べ。
ただし、同じものを繰り返しで選んでもよい。
(1)$x=2$は、$x^2-x-2=0$であるための[ア]。
(2)$\triangle ABC \sim \triangle PQR$であるための[イ]
(3)$ab+1=a+b$は、$a=1$または$b=1$であるための[ウ]
(5)$xy-x-y+1$
(6)$2a^2b-3ab+a-2b-2$

(6)$|a| \lt 1$かつ$|b| \lt 1$は、$ab+1 \gt a+b$であるための[カ]
(7)$xy(y-1)=0$であることは$x=y(y-1)=0$であるための[キ]
(8)$x^2y^2+(y-1)^2=0$であることは$x=y(y-1=0)$であるための[ク]
この動画を見る 

【高校数学】  数Ⅰ-65  2次不等式④

アイキャッチ画像
単元: #数Ⅰ#2次関数#2次方程式と2次不等式#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
◎次の条件を満たすように、定数$a,b$の値をそれぞれ求めよう。
①2次不等式$x^2+ax+b\gt0$の解が$x \lt -2,1 \lt x$
②2次不等式$ax^2+9x+2b \geqq 0$の解が$4\leqq x \leqq 5$
この動画を見る 
PAGE TOP