いきなり代入しませんよね?【数学 入試問題】【前橋国際大学】 - 質問解決D.B.(データベース)

いきなり代入しませんよね?【数学 入試問題】【前橋国際大学】

問題文全文(内容文):
$x=\dfrac{-1+\sqrt5}{2}$のとき、$x^3+x^2+x+1$の値を求めよ。

前橋国際大過去問
単元: #数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
$x=\dfrac{-1+\sqrt5}{2}$のとき、$x^3+x^2+x+1$の値を求めよ。

前橋国際大過去問
投稿日:2022.04.25

<関連動画>

高校生は知ってるが、中学生は知らない。式の値 同志社国際

アイキャッチ画像
単元: #数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
$a + b = \frac{1}{2}$ , $b + c = \frac{1}{3}$ , $c + a = \frac{1}{6}$
$a^2 + b^2 + c^2 +2ab +2bc +2ca = ?$

同志社国際高等学校
この動画を見る 

地道な解法にも工夫あり&ナイスな解法

アイキャッチ画像
単元: #数Ⅰ#数と式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$ x^3-2x^2-3x-1=0$の3つの解を$\alpha,\beta,\delta$とする.
$(\alpha^3-1)(\beta^3-1)(\delta^3-1)$の値を求めよ.
この動画を見る 

福田の数学〜慶應義塾大学2023年医学部第1問(2)〜虚数が係数の2次方程式の解

アイキャッチ画像
単元: #大学入試過去問(数学)#2次関数#複素数平面#2次方程式と2次不等式#複素数平面#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{1}$ (2)式4$z^2$+4$z$-$\sqrt 3 i$=0を満たす複素数zは2つある。それらを$\alpha$,$\beta$とする。ただし、$i$は虚数単位である。$\alpha$,$\beta$に対応する複素数平面上の点をそれぞれP,Qとすると、線分PQの長さは$\boxed{\ \ え\ \ }$であり、PQの中点の座標は($\boxed{\ \ お\ \ }$, $\boxed{\ \ か\ \ }$)である。
また線分PQの垂直二等分線の傾きは$\boxed{\ \ き\ \ }$である。

2023慶應義塾大学医学部過去問
この動画を見る 

【高校数学】絶対値~中学の感覚のままでは危険です~ 1-8 【数学Ⅰ】

アイキャッチ画像
単元: #数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
絶対値の説明動画です
この動画を見る 

【高校数学】数Ⅰ-19 1次不等式③(連立不等式編)

アイキャッチ画像
単元: #数Ⅰ#数と式#一次不等式(不等式・絶対値のある方程式・不等式)#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
①$\begin{eqnarray}
\left\{
\begin{array}{l}
3x + 8 \geqq 4x+2 \\
3x + 4 \gt -2x
\end{array}
\right.
\end{eqnarray}$

②$\begin{eqnarray}
\left\{
\begin{array}{l}
5x \lt 2(x-6) \\
7 - 2x \geqq 3x-8x
\end{array}
\right.
\end{eqnarray}$

③$2x-1\lt5x+8\lt7x+4$
この動画を見る 
PAGE TOP