平行であることの証明 2021 戸山(改) A - 質問解決D.B.(データベース)

平行であることの証明 2021 戸山(改) A

問題文全文(内容文):
EM//ABを示せ
*図は動画内参照

2021戸山高等学校
単元: #数学(中学生)#数A#図形の性質#三角形の辺の比(内分・外分・二等分線)#高校入試過去問(数学)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
EM//ABを示せ
*図は動画内参照

2021戸山高等学校
投稿日:2021.02.23

<関連動画>

N進法と倍数判定

アイキャッチ画像
単元: #数A#整数の性質#ユークリッド互除法と不定方程式・N進法#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$7$進法,$6$進法,$5$進法で表された$4$桁の整数である.
$ABCD_{(7)}$,$ABCD_{(6)}$,$ABCD_{(5)}$はすべて$6$の倍数$ABCD$をすべて求めよ.
この動画を見る 

慈恵医大 整数問題

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#数学(高校生)#東京慈恵会医科大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
実数$P$は素数、$a,b,c$自然数
$a$は素数

$a(ab-p^2)=C^2,b \leqq 2C$を満たす

(1)
$(a,b,c)$の組の個数を$P$を用いて表せ

(2)
$a,b,c$の最大公約数1となるような$(a,b,c)$の組の個数を$P$で表せ

出典:2017年東京慈恵会医科大学附属病院 過去問
この動画を見る 

数学オリンピック 予選の簡単な問題

アイキャッチ画像
単元: #数A#数学検定・数学甲子園・数学オリンピック等#場合の数と確率#整数の性質#場合の数#約数・倍数・整数の割り算と余り・合同式#数学オリンピック#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
数学オリンピック予選
$1^{2001}+2^{2001}+3^{2001}+\cdots+2000^{2001}+$
$2001^{2001}$を13で割った余りを求めよ.
この動画を見る 

福田の数学〜名古屋大学2022年理系第2問〜互いに素になるような確率

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#数学(高校生)#名古屋大学
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{2}}\ 1つのサイコロを3回投げる。1回目に出る目をa、2回目に出る目をb、\\
3回目に出る目をcとする。なおサイコロは1から6までの目が等しい確率で出るもの\\
とする。\\
(1)ab+2c \geqq abcとなる確率を求めよ。\\
(2)ab+2cと2abcが互いに素となる確率を求めよ。
\end{eqnarray}

2022名古屋大学理系過去問
この動画を見る 

有名問題だよ(多分)

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$\sqrt[n]{n}$が最大となる自然数$n$を求めよ.
この動画を見る 
PAGE TOP