気が付けば一瞬! - 質問解決D.B.(データベース)

気が付けば一瞬!

問題文全文(内容文):
Aの座標は?
*図は動画内参照
単元: #数Ⅱ#図形と方程式#円と方程式#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
Aの座標は?
*図は動画内参照
投稿日:2021.04.13

<関連動画>

福田のおもしろ数学114〜円の接線の公式の証明

アイキャッチ画像
単元: #数Ⅱ#図形と方程式#円と方程式#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
円$x^2$+$y^2$=$r^2$ 上の点($a$,$b$)における接線の方程式は
$ax$+$by$=$r^2$ であることを証明せよ。
この動画を見る 

【数Ⅱ】図形と方程式:円:円と方程式:円上の点Pにおける接線の方程式を求めよ。例題付き!

アイキャッチ画像
単元: #数Ⅱ#図形と方程式#円と方程式#数学(高校生)
教材: #PRIME数学#PRIME数学Ⅱ・B#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
円上の点における接線の方程式の求め方を解説!実際に
(1)円 x²+y²=5上の点P(1, 2)における接線の方程式、
(2) 円x²+y²= 36上の点P(6, 0)における接線の方程式 
も求めます。
この動画を見る 

福田のおもしろ数学056〜折り返し問題〜半円を折り返す

アイキャッチ画像
単元: #数A#数Ⅱ#図形の性質#方べきの定理と2つの円の関係#図形と方程式#円と方程式#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
図は半円 O を点 C で接するように折り返したもので EF はその折り目である。EF と AB の交点を D とする。 $AC = 6 , BC = 2$ のとき、 AD の長さを求めよ。
※図は動画内参照
この動画を見る 

福田のわかった数学〜高校2年生053〜領域(8)領域と最大最小(4)

アイキャッチ画像
単元: #数Ⅱ#図形と方程式#点と直線#円と方程式#軌跡と領域#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
数学$\textrm{II}$ 領域(8) 領域と最大最小(4)
$2x+3y \geqq 9, 4x+y \leqq18, y \leqq 2$のとき、
$x^2+y^2$
の最大値、最小値を求めよ。
この動画を見る 

福田のおもしろ数学154〜2変数関数の最大最小

アイキャッチ画像
単元: #数Ⅱ#図形と方程式#円と方程式#軌跡と領域#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$x$, $y$が実数で、$x^2$+$(y-1)^2$≦1 のとき、$z$=$\displaystyle\frac{x+y+1}{x-y+3}$ の最大値、最小値を求めよ。
この動画を見る 
PAGE TOP