大学入試問題#630「落ち着いて慌てない」 東京理科大学(2015) #指数対数 - 質問解決D.B.(データベース)

大学入試問題#630「落ち着いて慌てない」 東京理科大学(2015) #指数対数

問題文全文(内容文):
$f(x)=\displaystyle \frac{2^x-2^{-x}}{2}$とする
$f(b)=\displaystyle \frac{15}{8}$のとき
$f(b+log_23)$の値を求めよ

出典:2015年東京理科大学 入試問題
単元: #数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#対数関数#学校別大学入試過去問解説(数学)#東京理科大学#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
$f(x)=\displaystyle \frac{2^x-2^{-x}}{2}$とする
$f(b)=\displaystyle \frac{15}{8}$のとき
$f(b+log_23)$の値を求めよ

出典:2015年東京理科大学 入試問題
投稿日:2023.10.25

<関連動画>

【短時間でポイントチェック!!】対数方程式・対数不等式〔現役講師解説、数学〕

アイキャッチ画像
単元: #数Ⅱ#指数関数と対数関数#対数関数#数学(高校生)
指導講師: 3rd School
問題文全文(内容文):
①$\log_{3}x=2$
②$\log_{\sqrt{2}}x≧4$
③$\log_{\frac{1}{3}}x>2$
この動画を見る 

ただの対数方程式

アイキャッチ画像
単元: #数Ⅱ#指数関数と対数関数#対数関数#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$ \log_2 x+\log_3 x=1 $
これを解け.
この動画を見る 

北海道大 2次方程式 対数方程式 解の位置関係 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#大学入試過去問(数学)#2次関数#2次方程式と2次不等式#指数関数と対数関数#対数関数#学校別大学入試過去問解説(数学)#数学(高校生)#北海道大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
'84北海道大学過去問題
m>2 実数
$x^2-2^{m+1}x+3・2^m=0$・・・①
$2log_2x-log_2(x-1)=m$・・・②
(1)①、②はそれぞれ2つの異なる実数解をもつことを示せ
(2)①の解の1つだけが②の2つの解の間にあることを示せ
この動画を見る 

16大阪府教員採用試験(数学:高校1番 積分)

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#指数関数と対数関数#対数関数#微分とその応用#積分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#定積分#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
1⃣ $f(x)=\int_1^e |logt-logx|dt (1 \leqq x \leqq e)$
(1)f(x)を求めよ。
(2)f(x)の最大値、最小値を求めよ。
この動画を見る 

対数の良問!何で2022を挟み込む?【京都大学】【数学 入試問題】

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#対数関数#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
$5.4<\log_4 2022<5.5$であることを示せ。
ただし,$0.301<\log_{10} 2<0.3011$であることは用いてよい。

京都大過去問
この動画を見る 
PAGE TOP