福田の数学〜慶應義塾大学2024総合政策学部第4問〜中がくり抜かれた球の体積 - 質問解決D.B.(データベース)

福田の数学〜慶應義塾大学2024総合政策学部第4問〜中がくり抜かれた球の体積

問題文全文(内容文):
$\boxed{4}$点Oを中心とする半径$2$の球から点を中心とする半径$r(0 \lt r\lt 2)$の球をくり抜いてできた立体$V$がある。いま、点Oからおろした垂線の長さが$x(0 \lt x\lt 2)$である平面$P$で立体$V$を切り、2つの立体に分ける。2つの立体のうち、体積の小さい方を$V_{ 1 }$、大きい方を$V_{2}$とする。

(1)平面$P$による立体$V$の切り口の面積が$π(2-r)^2$であるとき、$x=\sqrt{ \boxed{ アイ }r^2+\boxed{ ウエ } }$である。
(2)$(0 \lt x\lt r)$のとき、$V_{1}$の体積は$(r^2+\boxed{ オカ})πx+\frac{\boxed{キク}}{\boxed{ケコ}}πr^3+\frac{\boxed{サシ}}{\boxed{スセ}}π$であり、$r \leqq x\lt2$のとき、$V_{1}$の体積は$\frac{\boxed{ソタ}}{\boxed{チツ}}πr^3+\boxed{テト}πx+\frac{\boxed{ナニ}}{\boxed{ヌネ}}π$である。
(3)$x=r$において、$V_{1}$の体積と$V_{2}$の体積の比が$1:3$になるとき、$r=\boxed{ノハ}+\sqrt{\boxed{ヒフ}}$である。また、$x=\frac{2}{3}r$において$V_{1}$の体積と$V_{2}$の体積の比が$1:3$になるとき、$r=\boxed{ヘホ}+\sqrt{\boxed{マミ}}$である。
単元: #大学入試過去問(数学)#積分とその応用#面積・体積・長さ・速度#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$\boxed{4}$点Oを中心とする半径$2$の球から点を中心とする半径$r(0 \lt r\lt 2)$の球をくり抜いてできた立体$V$がある。いま、点Oからおろした垂線の長さが$x(0 \lt x\lt 2)$である平面$P$で立体$V$を切り、2つの立体に分ける。2つの立体のうち、体積の小さい方を$V_{ 1 }$、大きい方を$V_{2}$とする。

(1)平面$P$による立体$V$の切り口の面積が$π(2-r)^2$であるとき、$x=\sqrt{ \boxed{ アイ }r^2+\boxed{ ウエ } }$である。
(2)$(0 \lt x\lt r)$のとき、$V_{1}$の体積は$(r^2+\boxed{ オカ})πx+\frac{\boxed{キク}}{\boxed{ケコ}}πr^3+\frac{\boxed{サシ}}{\boxed{スセ}}π$であり、$r \leqq x\lt2$のとき、$V_{1}$の体積は$\frac{\boxed{ソタ}}{\boxed{チツ}}πr^3+\boxed{テト}πx+\frac{\boxed{ナニ}}{\boxed{ヌネ}}π$である。
(3)$x=r$において、$V_{1}$の体積と$V_{2}$の体積の比が$1:3$になるとき、$r=\boxed{ノハ}+\sqrt{\boxed{ヒフ}}$である。また、$x=\frac{2}{3}r$において$V_{1}$の体積と$V_{2}$の体積の比が$1:3$になるとき、$r=\boxed{ヘホ}+\sqrt{\boxed{マミ}}$である。
投稿日:2024.10.17

<関連動画>

福田の数学〜神戸大学2024年理系第5問〜定積分で表された関数と不等式

アイキャッチ画像
単元: #積分とその応用#定積分#神戸大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{5}$ 0以上の実数$x$に対して、
$f(x)$=$\displaystyle\frac{1}{2}\int_{-x}^x\frac{1}{1+u^2}du$
と定める。以下の問いに答えよ。
(1)0≦$\alpha$<$\displaystyle\frac{\pi}{2}$ を満たす実数$\alpha$に対して、$f(\tan\alpha)$を求めよ。
(2)$xy$平面上で、次の連立不等式の表す領域を図示せよ。
0≦$x$≦1, 0≦$y$≦1, $f(x)$+$f(y)$≦$f(1)$
またその領域の面積を求めよ。
この動画を見る 

福田の数学〜中央大学2022年理工学部第3問〜指数関数の接線と囲まれる部分の面積

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#指数関数#微分とその応用#積分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#定積分#面積・体積・長さ・速度#学校別大学入試過去問解説(数学)#中央大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
関数 $f(x) = -xe^x$ を考える。曲線$C: y = f(x)$の点(a, f(a)) における接線を$l_a$と
し、接線$l_a$とy軸の交点を $(0, g(a))$ とおく。以下の問いに答えよ。
(1) 接線$l_a$の方程式と$g (a)$を求めよ。
以下、aの関数$g (a)$ が極大値をとるときのaの値をbとおく。
(2) bを求め、点$(b, f(b))$ は曲線Cの変曲点であることを示せ。
(3) 曲線Cの点 $(b, f(b))$ における接線$l_b$と x軸の交点のx座標cを求めよ。さらに、
$c\leqq x\leqq 0$の範囲で曲線Cの概形と接線l_bをxy 平面上に図示せよ。
(4)曲線C、接線$l_b$およびy軸で囲まれた部分の面積Sを求めよ。

2022中央大学理工学部過去問
この動画を見る 

08東京都教員採用試験(数学:4番 極値)

アイキャッチ画像
単元: #積分とその応用#定積分#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$n:$自然数
$f_n(x)=\displaystyle \int_{x}^{x+1}\displaystyle \frac{t^n}{t^{2n}+2}\ dt$は$x=1$で極値をとるときの$n$と$f_n(1)$を求めよ。

出典:東京都教員採用試験
この動画を見る 

大学入試問題#620「ほぼ一択」 横浜国立大学(2023) #定積分 僚太さんの紹介

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#横浜国立大学#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{log\frac{\pi}{4}}^{log\frac{\pi}{2}} \displaystyle \frac{e^{2x}}{\{\sin(e^x)\}^2} dx$

出典:2023年横浜国立大学 入試問題
この動画を見る 

【数Ⅲ】【積分とその応用】t秒後の速度が v=30-10t(m/s)となるように地上から真上に投げ上げられた物体は、何秒後に何mの高さまで上がって落ち始めるか。

アイキャッチ画像
単元: #積分とその応用#面積・体積・長さ・速度#数学(高校生)#数Ⅲ
教材: #4S数学#4S数学ⅢのB問題解説#中高教材#積分法の応用
指導講師: 理数個別チャンネル
問題文全文(内容文):
t秒後の速度が v=30-10t(m/s)となるように地上から真上に投げ上げられた物体は、何秒後に何mの高さまで上がって落ち始めるか。
この動画を見る 
PAGE TOP