【短時間でポイントチェック!!】3次関数の増減〔現役講師解説、数学〕 - 質問解決D.B.(データベース)

【短時間でポイントチェック!!】3次関数の増減〔現役講師解説、数学〕

問題文全文(内容文):
$y=x^3-12x$の増減を調べよ。
単元: #数Ⅱ#微分法と積分法#接線と増減表・最大値・最小値#数学(高校生)
指導講師: 3rd School
問題文全文(内容文):
$y=x^3-12x$の増減を調べよ。
投稿日:2023.12.27

<関連動画>

福田の数学〜北海道大学2023年理系第5問〜中間値の定理と関数の増減PART2

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#式と証明#恒等式・等式・不等式の証明#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#数学(高校生)#北海道大学#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{5}$ a,bを$a^2$+$b^2$< 1を満たす正の実数とする。また、座標平面上で原点を中心とする半径1の円をCとし、Cの内部になる2点A(a,0), B(0,b)を考える。
0<θ<$\frac{\pi}{2}$に対してC上の点P($\cos\theta$, $\sin\theta$)を考え、PにおけるCの接線に関してBと対称な点をDとおく。
(1)$f(\theta)$=ab$\cos2\theta$+a$\sin\theta$-b$\cos\theta$とおく。方程式$f(\theta)$=0の解が0<θ<$\frac{\pi}{2}$の範囲に少なくとも一つ存在することを示せ。
(2)Dの座標をa,θを用いて表せ。
(3)θが0<θ<$\frac{\pi}{2}$の範囲を動くとき、3点A,P,Dが同一直線上にあるようなθは少なくとも一つ存在することを示せ。また、このようなθはただ一つであることを示せ。

2023北海道大学理系過去問
この動画を見る 

【高校数学】2文字の恒等式について~問題演習~ 1-7.5【数学Ⅱ】

アイキャッチ画像
単元: #数Ⅱ#式と証明#恒等式・等式・不等式の証明#数学(高校生)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
等式3x²-2xy+7y²=a(x+y)²+b(x+y)(x-y)+c(x-y)²
がx,yについての恒等式となるように定数a,b,cの値を求めよ。
この動画を見る 

指数の計算

アイキャッチ画像
単元: #数Ⅱ#指数関数と対数関数#指数関数#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
以下を求めよ。
$2^3=??$
$2^2=??$
$2^1=??$
$2^0=??$
$2^{-1}=??$
$2^{-2}=??$
この動画を見る 

バングラデシュ数学オリンピック

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$
\begin{eqnarray}
\left\{
\begin{array}{l}
x+y=1 \\
x^5+y^5=31
\end{array}
\right.
\end{eqnarray}
$
この動画を見る 

部分積分の基本 信州大

アイキャッチ画像
単元: #数Ⅱ#微分法と積分法#不定積分・定積分#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
これを解け.

$\displaystyle \int_{}^{} e^{-x}\sin x dx$

信州大過去問
この動画を見る 
PAGE TOP