【簡単すぎ】4分で不定方程式が得意になります。 - 質問解決D.B.(データベース)

【簡単すぎ】4分で不定方程式が得意になります。

問題文全文(内容文):
$ax+by=d$を満たす整数$x,y$をすべて求めよ
$(a,b,d$は整数$)$
単元: #数A#整数の性質#ユークリッド互除法と不定方程式・N進法#数学(高校生)
指導講師: 3rd School
問題文全文(内容文):
$ax+by=d$を満たす整数$x,y$をすべて求めよ
$(a,b,d$は整数$)$
投稿日:2021.01.29

<関連動画>

2022灘中 整数問題

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$A=?$
$\dfrac{A}{2^a}-\dfrac{B}{3^b}-\dfrac{1}{5^4}=\dfrac{337}{2^a・3^b・5^4}$
$1\leqq B\leqq 9,2\leqq a,b\leqq5$

灘中過去問
この動画を見る 

東京女子医科大 整数問題

アイキャッチ画像
単元: #整数の性質#約数・倍数・整数の割り算と余り・合同式
指導講師: 鈴木貫太郎
問題文全文(内容文):
$ \dfrac{n^2}{m}+\dfrac{m}{n}=8$
をみたす自然数$(m,n)$をすべて求めよ.

東京女子医科大過去問
この動画を見る 

整数問題 千葉大(類)

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$N!$の下8桁は0で下9桁に初めて0以外の数が現れる.
最小の$N$とそのときの9桁目の数を求めよ.

千葉大(類)過去問
この動画を見る 

2023年に出題されなかった問題

アイキャッチ画像
単元: #数A#図形の性質#三角形の辺の比(内分・外分・二等分線)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
x=?
*図は動画内参照
この動画を見る 

整数問題(フェルマーの小定理)

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$3^n+5^n-1$が$7$の倍数となる自然数$n$の条件を求めよ.
この動画を見る 
PAGE TOP