#三重大学医学部2023#極限_50 - 質問解決D.B.(データベース)

#三重大学医学部2023#極限_50

問題文全文(内容文):
$\displaystyle \lim_{n\to\infty} \dfrac{n\{ \log n-\log (n+1)\}}{\log n}{\log n}$
を解け.

2023三重大学医学部過去問題
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#平均変化率・極限・導関数#学校別大学入試過去問解説(数学)#数学(高校生)#三重大学
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \lim_{n\to\infty} \dfrac{n\{ \log n-\log (n+1)\}}{\log n}{\log n}$
を解け.

2023三重大学医学部過去問題
投稿日:2024.09.11

<関連動画>

【高校数学】毎日積分65日目~47都道府県制覇への道~【⑨高知】【毎日17時投稿】

アイキャッチ画像
単元: #数Ⅱ#微分法と積分法#不定積分・定積分#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
(1)すべての実数xに対して
$\sin 3x=3\sin x-4\sin^3x$
$\cos 3x=-3\cos x+4\cos^3x$
が成り立つことを、加法定理と2倍角の公式を用いて示せ。
(2)実数$\theta$を、$\dfrac{\pi}{3}\lt \theta \lt \dfrac{\pi}{2}$と$\cos 3\theta=-\dfrac{11}{16}$を同時に満たすものとする。このとき、$\cos\theta$を求めよ。
(3)(2)の$\theta$に対して、定積分$\displaystyle \int_{0}^{\theta}sin^5x dx$を求めよ。
【高知大学 2023】
この動画を見る 

福田のわかった数学〜高校2年生045〜軌跡(12)2本の直交する接線が引ける点の軌跡

アイキャッチ画像
単元: #数Ⅱ#図形と方程式#軌跡と領域#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
数学$\textrm{II}$ 軌跡(12) 接線直交
点Pは放物線$C:y=x^2$へ2本の接線が引け、その2本の
接線は直交するという。そのような点Pの軌跡を求めよ。
この動画を見る 

ガウス記号 極限

アイキャッチ画像
単元: #数Ⅱ#微分法と積分法#平均変化率・極限・導関数#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$n$を自然数とする.これを解け.

$\displaystyle \lim_{n\to\infty}(\sqrt{25n^2+11n+2}-[\sqrt{25n^2+11n+2}])$
この動画を見る 

【高校数学】 数Ⅱ-138 対数関数④・不等式編

アイキャッチ画像
単元: #数Ⅱ#指数関数と対数関数#対数関数#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
◎次の不等式を解こう。

①$\log_3 x \lt \displaystyle \frac{3}{2}$

②$\log_{\frac{1}{3}}x \geqq 2$

③$\log_3(x+2) \lt 2$

④$\log_2(x+1)+\log_2(x-2) \geqq 2$

⑤$\log_{\frac{1}{2}}(x-1)+\log_{\frac{1}{2}}(x-2) \geqq -1$
この動画を見る 

福田の数学〜北里大学2021年医学部第1問(3)〜三角関数への置き換えによる最大値の求め方

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#三角関数#学校別大学入試過去問解説(数学)#北里大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
(3)$0 \leqq \theta \lt 2\pi$のとき、関数$f(\theta)=2\cos\theta(\sqrt3\sin\theta+\cos\theta)$の最大値は
$\boxed{ ケ}$である。
$g(x,y)=\frac{2\sqrt3xy+2x^2}{x^4+2x^2y^2+y^4+1}$について考える。aを正の定数とし、点(x,y)が
円$x^2+y^2=a^2$上を動くとき、g$(x,y)$の最大値はaを用いて$\boxed{コ}$と表せる。
また、点(x,y)がxy平面全体を動くとき、g(x,y)の最大値は$\boxed{サ}$である。

2021北里大学医学部過去問
この動画を見る 
PAGE TOP