【論点はまだある…!】整数:早稲田大学系属早稲田実業学校高等部~全国入試問題解法 - 質問解決D.B.(データベース)

【論点はまだある…!】整数:早稲田大学系属早稲田実業学校高等部~全国入試問題解法

問題文全文(内容文):
$42024を素因数分解せよ$
単元: #数学(中学生)#数A#整数の性質#高校入試過去問(数学)#数学(高校生)#早稲田大学系属早稲田実業学校高等部
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
$42024を素因数分解せよ$
投稿日:2024.08.02

<関連動画>

放物線と円 早稲田本庄 令和4年度 2022 入試問題100題解説96問目!

アイキャッチ画像
単元: #数学(中学生)#数A#図形の性質#周角と円に内接する四角形・円と接線・接弦定理#高校入試過去問(数学)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
点Bの座標は?
*図は動画内参照

2022早稲田大学 本庄高等学院
この動画を見る 

福田の数学〜慶應義塾大学2021年環境情報学部第3問〜多面体の面の色の変化と確率

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{3}}$ 
(1)各面が白色あるいは黒色で塗られた正四面体について、いずれか1つの面を等確率$\dfrac{1}{4}$で選択し、選択した面を除いた3つの面の色を白色であれば黒色に、黒色であれば白色に塗りなおす試行を繰り返す。正四面体の全てが白色の状態から開始するとき
$(\textrm{a})$2つの面が白色、2つの面が黒色になる最小の試行回数は$\boxed{\ \ アイ\ \ }$であり、この試行回数で同状態が実現する確率は$\dfrac{\boxed{\ \ ウエ\ \ }}{\boxed{\ \ オカ\ \ }}$である。
$(\textrm{b})$すべての面が黒色になる最小の試行回数は$\boxed{\ \ キク\ \ }$であり、この試行回数で同状態が実現する確率は$\dfrac{\boxed{\ \ ケコ\ \ }}{\boxed{\ \ サシ\ \ }}$である。

(2)各面が白色あるいは黒色で塗られた立方体について、いずれか1つの面を等確率$\dfrac{1}{6}$で選択し、選択した面を除いた5つの面の色を白色であれば黒色に、黒色であれば白色に塗り直す試行をくり返す。立方体のすべての面が白色の状態から開始するとき
$(\textrm{a})$3つの面が白色、3つの面が黒色になる最小の試行回数は$\boxed{\ \ スセ\ \ }$であり、この試行回数で同状態が実現する確率は$\dfrac{\boxed{\ \ ソタ\ \ }}{\boxed{\ \ チツ\ \ }}$である。
$(\textrm{b})$すべての面が黒色になる最小の試行回数は$\boxed{\ \ テト\ \ }$であり、この試行回数で同状態が実現する確率は$\dfrac{\boxed{\ \ ナニヌ\ \ }}{\boxed{\ \ ネノハ\ \ }}$である。

慶應義塾大学2021年環境情報学部第3問
この動画を見る 

福田の数学〜慶應義塾大学2021年環境情報学部第1問〜三角形の内部にある外接している5つの円

アイキャッチ画像
単元: #数Ⅰ#数A#大学入試過去問(数学)#図形の性質#図形と計量#三角比(三角比・拡張・相互関係・単位円)#三角比への応用(正弦・余弦・面積)#方べきの定理と2つの円の関係#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$ 
図(※動画参照)のように三角形$\rm ABC$の内部に半径$1$の円が5つ含まれている。4つの円は辺$\rm BC$に接しながら横一列に互いに接しながら並び、左端の円は辺$\rm AB$に接し、右端の円は辺$\rm AC$に接している。また、もう一つの円は、辺$\rm AB$と辺$\rm AC$に接し、4つの円の右側の2つの円に接している。このとき
$\textrm{AB}=\dfrac{\sqrt{\boxed{\ \ アイ\ \ }}}{\boxed{\ \ ウエ\ \ }}\textrm{BC}$ 
$\rm AC=\dfrac{\boxed{\ \ オカ\ \ }}{\boxed{\ \ キク\ \ }}BC$
$\rm BC=\dfrac{1}{\boxed{\ \ テト\ \ }}(\boxed{\ \ ケコ\ \ }+$$\boxed{\ \ サシ\ \ }\sqrt{\boxed{\ \ スセ\ \ }}+$$\boxed{\ \ ソタ\ \ }\sqrt{\boxed{\ \ チツ\ \ }})$   $(\boxed{\ \ スセ\ \ } \lt \boxed{\ \ チツ\ \ })$
である。

2021慶應義塾大学環境情報学部過去問
この動画を見る 

真面目な方程式 解は2つ

アイキャッチ画像
単元: #数A#整数の性質#ユークリッド互除法と不定方程式・N進法#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
これを解け.
$x^x=\left(\dfrac{4}{9}\right)^{\frac{4}{9}}$
この動画を見る 

【数A】整数の性質:最大公約数と最小公倍数の性質

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
【高校数学 数学A 整数の性質】
(1)自然数nと30の最大公約数が6、最小公倍数が120であるとき、このnを求めよ。
(2)和が280、最大公約数が14となる自然数aとb(ただしa<bとする)をすべて求めよ。

(出典元)4STEP数学Aより
この動画を見る 
PAGE TOP