数学「大学入試良問集」【14−3 垂直と平面ベクトルと正射影】を宇宙一わかりやすく - 質問解決D.B.(データベース)

数学「大学入試良問集」【14−3 垂直と平面ベクトルと正射影】を宇宙一わかりやすく

問題文全文(内容文):
$\triangle OAB$において、辺$OA,$辺$OB$の長さをそれぞれ$a,b$とする。
また、$\angle AOB$は直角ではないとする。
2つのベクトル$\overrightarrow{ OA }$と$\overrightarrow{ OB }$の内積$\overrightarrow{ OA }・\overrightarrow{ OB }$を$k$とおく。
次の問いに答えよ。

(1)
直線$OA$上に点$C$を、$\overrightarrow{ BC }$が$\overrightarrow{ OA }$と垂直になるようにとる。
$\overrightarrow{ OC }$を$a,k,\overrightarrow{ OA }$を用いて表せ。

(2)
$a=\sqrt{ 2 },b=1$とする。
直線$BC$上に点$H$を、$\overrightarrow{ AH }$が$\overrightarrow{ OB }$と垂直になるようにとる。
$\overrightarrow{ OH }=u\overrightarrow{ OA }+v\overrightarrow{ OB }$とおくとき、$u$と$v$をそれぞれ$k$で表せ。
単元: #大学入試過去問(数学)#平面上のベクトル#平面上のベクトルと内積#学校別大学入試過去問解説(数学)#神戸大学#数学(高校生)#数C
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
$\triangle OAB$において、辺$OA,$辺$OB$の長さをそれぞれ$a,b$とする。
また、$\angle AOB$は直角ではないとする。
2つのベクトル$\overrightarrow{ OA }$と$\overrightarrow{ OB }$の内積$\overrightarrow{ OA }・\overrightarrow{ OB }$を$k$とおく。
次の問いに答えよ。

(1)
直線$OA$上に点$C$を、$\overrightarrow{ BC }$が$\overrightarrow{ OA }$と垂直になるようにとる。
$\overrightarrow{ OC }$を$a,k,\overrightarrow{ OA }$を用いて表せ。

(2)
$a=\sqrt{ 2 },b=1$とする。
直線$BC$上に点$H$を、$\overrightarrow{ AH }$が$\overrightarrow{ OB }$と垂直になるようにとる。
$\overrightarrow{ OH }=u\overrightarrow{ OA }+v\overrightarrow{ OB }$とおくとき、$u$と$v$をそれぞれ$k$で表せ。
投稿日:2021.10.05

<関連動画>

福田の数学〜一橋大学2025文系第4問〜ベクトル方程式と領域と角を2等分するベクトル

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#平面上のベクトル#図形と方程式#軌跡と領域#ベクトルと平面図形、ベクトル方程式#学校別大学入試過去問解説(数学)#一橋大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):

$\boxed{4}$

原点を$O$とする座標空間内の

$2$点$A(0,3,-5),B(5,-2,10)$に対して

$\overrightarrow{OP}=s\left \{ (1-t)\overrightarrow{OA}+t\overrightarrow{OB} \right \},x\geqq 0,\dfrac{1}{5} \leqq t \leqq \dfrac{3}{5}$

で定まる点$P$が存在する範囲を$D$とする。

$D$に含まれる半径$10\sqrt2$の円のうち、

その中心と原点との距離が最小となるものを

$C$とする。

円$C$の中心の座標を求めよ。

$2025$年一橋大学文系過去問題
この動画を見る 

【高校数学】 数B-47 位置ベクトルと図形③

アイキャッチ画像
単元: #平面上のベクトル#平面上のベクトルと内積#ベクトルと平面図形、ベクトル方程式#数学(高校生)#数C
指導講師: とある男が授業をしてみた
問題文全文(内容文):
①3点$A(4,3,a),B(2,-1,5),C(5,b,-13)$が一直線上にあるように
$a,b$の値を定めよう.

②4点$A(5,2,5),B(3,1,2),C(-2,-1,-6),D(a,2,3)$が同じ平面上にあるように
定数$a$の値を定めよう.
この動画を見る 

【高校数学】 数B-8 ベクトルの成分①

アイキャッチ画像
単元: #平面上のベクトル#平面上のベクトルと内積#数学(高校生)#数C
指導講師: とある男が授業をしてみた
問題文全文(内容文):
右図において、ベクトル$\overrightarrow{ a }$を成分を用いて$\overrightarrow{ a }=(a_1,a_2)$と表し、$|\vec{ a }|=$①____となる。

◎右図のベクトルを成分で表し、それぞれの大きさを求めよう。

②$\overrightarrow{ b }$

③$\overrightarrow{ c }$

④$\overrightarrow{ a }$

※図は動画内参照
この動画を見る 

【数C】ベクトルの基本⑩三角形の面積の公式2パターン

アイキャッチ画像
単元: #平面上のベクトル#平面上のベクトルと内積#数学(高校生)#数C
教材: #チャート式#青チャートⅡ・B#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
ベクトルを用いた三角形の面積の公式
この動画を見る 

福田の数学〜中央大学2024経済学部第1問(5)〜ベクトルの基本的な演算

アイキャッチ画像
単元: #平面上のベクトル#ベクトルと平面図形、ベクトル方程式#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
$\bigtriangleup \mathrm{ABC}$ と点 $\mathrm{P}$ があり、$2\vec{\mathrm{AP}}+3\vec{\mathrm{BP}}+5\vec{\mathrm{CP}}=\vec{0}$ を満たしている。このとき、$\vec{\mathrm{AB}}=\vec{b}, \, \vec{\mathrm{AC}}=\vec{c}$ として、$\vec{\mathrm{AP}}$ を $\vec{b}$ と $\vec{c}$ で表せ。
この動画を見る 
PAGE TOP