問題文全文(内容文):
${\Large\boxed{1}}$ (3)不等式
$1 \leqq z \leqq 4,\ \frac{x^2}{z^2}+4z^4y^2 \leqq 1$
が表す座標空間内の領域の体積は$\boxed{\ \ え\ \ }$である。
$\boxed{\ \ え\ \ }$の選択肢:
$(\textrm{a})\frac{3\pi}{2} (\textrm{b})3\pi (\textrm{c})\frac{3\pi^2}{2} (\textrm{d})3\pi^2$
$(\textrm{e})\pi\log 2 (\textrm{f})\frac{\pi\log 2}{2} (\textrm{g})3\pi^2\log 2$
2021上智大学理系過去問
${\Large\boxed{1}}$ (3)不等式
$1 \leqq z \leqq 4,\ \frac{x^2}{z^2}+4z^4y^2 \leqq 1$
が表す座標空間内の領域の体積は$\boxed{\ \ え\ \ }$である。
$\boxed{\ \ え\ \ }$の選択肢:
$(\textrm{a})\frac{3\pi}{2} (\textrm{b})3\pi (\textrm{c})\frac{3\pi^2}{2} (\textrm{d})3\pi^2$
$(\textrm{e})\pi\log 2 (\textrm{f})\frac{\pi\log 2}{2} (\textrm{g})3\pi^2\log 2$
2021上智大学理系過去問
単元:
#大学入試過去問(数学)#積分とその応用#定積分#面積・体積・長さ・速度#学校別大学入試過去問解説(数学)#上智大学#数学(高校生)#数Ⅲ
指導講師:
福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$ (3)不等式
$1 \leqq z \leqq 4,\ \frac{x^2}{z^2}+4z^4y^2 \leqq 1$
が表す座標空間内の領域の体積は$\boxed{\ \ え\ \ }$である。
$\boxed{\ \ え\ \ }$の選択肢:
$(\textrm{a})\frac{3\pi}{2} (\textrm{b})3\pi (\textrm{c})\frac{3\pi^2}{2} (\textrm{d})3\pi^2$
$(\textrm{e})\pi\log 2 (\textrm{f})\frac{\pi\log 2}{2} (\textrm{g})3\pi^2\log 2$
2021上智大学理系過去問
${\Large\boxed{1}}$ (3)不等式
$1 \leqq z \leqq 4,\ \frac{x^2}{z^2}+4z^4y^2 \leqq 1$
が表す座標空間内の領域の体積は$\boxed{\ \ え\ \ }$である。
$\boxed{\ \ え\ \ }$の選択肢:
$(\textrm{a})\frac{3\pi}{2} (\textrm{b})3\pi (\textrm{c})\frac{3\pi^2}{2} (\textrm{d})3\pi^2$
$(\textrm{e})\pi\log 2 (\textrm{f})\frac{\pi\log 2}{2} (\textrm{g})3\pi^2\log 2$
2021上智大学理系過去問
投稿日:2021.09.06