【誘導あり:概要欄】大学入試問題#357「この大問は落とせないかな~~」 横浜国立大学2010 #定積分 #積分の応用 - 質問解決D.B.(データベース)

【誘導あり:概要欄】大学入試問題#357「この大問は落とせないかな~~」 横浜国立大学2010 #定積分 #積分の応用

問題文全文(内容文):
(1)
$0 \lt x \lt \pi$のとき
$\sin\ x-x\cos\ x \gt 0$を示せ

(2)
$0 \lt a \lt 1$
$I=\displaystyle \int_{0}^{\pi} |\sin\ x-ax| dx$を最小にする$a$の値を求めよ。

出典:2010年横浜国立大学 入試問題
チャプター:

00:00 問題紹介
00:25 本編スタート
09:32 作成した解答①
09:43 作成した解答②
09:54 作成した解答③
10:05 エンディング(楽曲提供:兄いえぃさん)

単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#横浜国立大学#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
(1)
$0 \lt x \lt \pi$のとき
$\sin\ x-x\cos\ x \gt 0$を示せ

(2)
$0 \lt a \lt 1$
$I=\displaystyle \int_{0}^{\pi} |\sin\ x-ax| dx$を最小にする$a$の値を求めよ。

出典:2010年横浜国立大学 入試問題
投稿日:2022.11.04

<関連動画>

福田の数学〜九州大学2024年理系第5問〜定積分で定義された数列の極限

アイキャッチ画像
単元: #関数と極限#微分とその応用#積分とその応用#数列の極限#微分法#定積分#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{5}$ 自然数$m$, $n$に対して
$I(m,n)$=$\displaystyle\int_1^ex^me^x(\log x)^ndx$
とする。以下の問いに答えよ。
(1)$I(m+1,n+1)$を$I(m,n+1)$, $I(m,n)$, $m$, $n$を用いて表せ。
(2)すべての自然数$m$に対して、$\displaystyle\lim_{n \to \infty}I(m,n)$=0 が成り立つことを示せ。
この動画を見る 

福田の1.5倍速演習〜合格する重要問題070〜筑波大学2017年度理系第5問〜格子点の個数とガウス記号と区分求積

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#漸化式#関数と極限#積分とその応用#関数(分数関数・無理関数・逆関数と合成関数)#関数の極限#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#筑波大学#数B#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$\Large{\boxed{5}}$ xy平面において、x座標とy座標がともに整数である点を格子点という。また、実数aに対して、a以下の最大の整数を[a]で表す。記号[ ]をガウス記号という。
以下の問いではNを自然数とする。
(1) nを0 $\leqq$ n $\leqq$ Nを満たす整数とする。点(n, 0)と点(n, N$\sin\left(\displaystyle\frac{\pi x}{2N}\right)$)を結ぶ線分上にある格子点の個数をガウス記号を用いて表せ。
(2) 直線y=xと、x軸、および直線x=Nで囲まれた領域(境界を含む)にある格子点の個数をA(N)とおく。このときA(N)を求めよ。
(3) 曲線y=N$\sin\left(\displaystyle\frac{\pi x}{2N}\right)$(0 $\leqq$ x $\leqq$ N)と、x軸、および直線x=Nで囲まれた領域(境界を含む)にある格子点の個数をB(N)とおく。(2)のA(N)に対して$\displaystyle\lim_{N \to \infty}\frac{B(N)}{A(N)}$を求めよ。

2017筑波大学理系過去問
この動画を見る 

福田のおもしろ数学091〜定積分と軌跡

アイキャッチ画像
単元: #数Ⅱ#図形と方程式#軌跡と領域#積分とその応用#不定積分#定積分#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$\displaystyle\int_x^y(|t|-1)dt$=0 を満たす点($x$,$y$)の軌跡を図示せよ。
この動画を見る 

大学入試問題#132 横浜国立大学(2007) 定積分

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#横浜国立大学#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{\frac{4}{3}}^{2}\displaystyle \frac{1}{x^2\sqrt{ x-1 }}\ dx$を計算せよ。

出典:2007年横浜国立大学 入試問題
この動画を見る 

大学入試問題#561「不定積分だと難易度爆上げ」 東京帝国大学(1930) #不定積分

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int \displaystyle \frac{dx}{x\sqrt{ 1-x^2 }}$

出典:1930年東京帝国大学 入試問題
この動画を見る 
PAGE TOP