すいの体積はなぜ1/3か - 質問解決D.B.(データベース)

すいの体積はなぜ1/3か

問題文全文(内容文):
すいの体積はなぜ三分の一なのか解説していきます.
単元: #微分とその応用#積分とその応用#面積・体積・長さ・速度#数学(高校生)#数Ⅲ
指導講師: 鈴木貫太郎
問題文全文(内容文):
すいの体積はなぜ三分の一なのか解説していきます.
投稿日:2018.02.05

<関連動画>

福田の数学〜慶應義塾大学2021年医学部第4問〜カテナリーと円の相接

アイキャッチ画像
単元: #大学入試過去問(数学)#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{4}}$ 
曲線$y=\dfrac{e^x+e^{-x}}{2} (x \gt 0)$を$C$で表す。$\textrm{Q}(X,Y)$を中心とする半径$r$の円が曲線$C$と、点$\textrm{P}(t,\dfrac{e^t+e^{-t}}{2})$ (ただし$t \gt 0$)において共通の接線をもち、さらに$X \lt t$であるとする。このとき$X$および$Y$を$t$の式で表すと
$X=\boxed{\ \ (あ)\ \ }, Y=\boxed{\ \ (い)\ \ }$
となる。$t$の関数$X(t),Y(t)$を$X(t)=\boxed{\ \ (あ)\ \ },Y(t)=\boxed{\ \ (い)\ \ }$により定義する。全ての$t \gt 0$に対して$X(t) \gt 0$となるための条件は、$r$が不等式$\boxed{\ \ (う)\ \ }$を満たすことである。$\boxed{\ \ (う)\ \ }$が成り立たないとき、関数$Y(t)$は$t=\boxed{\ \ (え)\ \ }$において最小値$\boxed{\ \ (お)\ \ }$をとる。また$\boxed{\ \ (う)\ \ }$が成り立つとき、$Y$を$X$の関数と考えて、$(\dfrac{dY}{dX})^2+1$を$Y$の式で表すと$(\dfrac{dY}{dX})^2+1=\boxed{\ \ (か)\ \ }$ となる。

2021慶應義塾大学医学部過去問
この動画を見る 

【高校数学】数Ⅲ-100 対数微分法

アイキャッチ画像
単元: #微分とその応用#微分法#数学(高校生)#数Ⅲ
指導講師: とある男が授業をしてみた
問題文全文(内容文):
次の関数を対数微分法を用いて微分せよ。

①$y=\dfrac{x^2(x-1)}{x-2}$

②$y=\sqrt[3]{x^2(x+1)}$
この動画を見る 

福田の数学〜京都大学2025理系第3問〜関数の増減と値域

アイキャッチ画像
単元: #微分とその応用#色々な関数の導関数#関数の変化(グラフ・最大最小・方程式・不等式)#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):

$\boxed{3}$

$e$は自然対数の底とする。

$x\gt \dfrac{1}{\sqrt e}$において定義された次の関数

$f(x),g(x)$を考える。

$f(x)=x^2 \log x$

$g(x)=x^2\log x - \dfrac{1}{1+2\log x}$

実数$t$は$t\gt \dfrac{1}{\sqrt e}$を満たすとする。

曲線$y=f(x)$上の店$(t,f(t))$における接線に垂直で、

点$(t,g(t))$を通る直線を$l_t$とする。

直線$l_t$が$x$軸と交わる点の$x$座標を$p(t)$とする。

$t$が$\dfrac{1}{\sqrt e} \lt t \leqq e$の範囲を動くとき、

$p(t)$の取りうる値の範囲を求めよ。

$2025$年京都大学理系過去問題
この動画を見る 

佐賀大 三次関数

アイキャッチ画像
単元: #大学入試過去問(数学)#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#数学(高校生)#佐賀大学#数Ⅲ
指導講師: 鈴木貫太郎
問題文全文(内容文):
$y=x^3-x$上を点$P$が原点から点$A(a,a^3-a)$まで動く
$(a \gt 0)\triangle OAP$の最大値を求めよ

出典:2005年佐賀大学 過去問
この動画を見る 

【数Ⅲ】【微分とその応用】関数の最大と最小9 ※問題文は概要欄

アイキャッチ画像
単元: #微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#数学(高校生)#数Ⅲ
教材: #4S数学#4S数学ⅢのB問題解説#中高教材#微分法の応用
指導講師: 理数個別チャンネル
問題文全文(内容文):
定点A(a,b)を通る傾きが負の直線と、x軸およびy軸とが作る三角形の面積Sの最小値を求めよ。ただし、a>0,b>0とする。
この動画を見る 
PAGE TOP