すいの体積はなぜ1/3か - 質問解決D.B.(データベース)

すいの体積はなぜ1/3か

問題文全文(内容文):
すいの体積はなぜ三分の一なのか解説していきます.
単元: #微分とその応用#積分とその応用#面積・体積・長さ・速度#数学(高校生)#数Ⅲ
指導講師: 鈴木貫太郎
問題文全文(内容文):
すいの体積はなぜ三分の一なのか解説していきます.
投稿日:2018.02.05

<関連動画>

【数Ⅲ-131】いろいろな量の変化率

アイキャッチ画像
単元: #微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#数学(高校生)#数Ⅲ
指導講師: とある男が授業をしてみた
問題文全文(内容文):
数Ⅲ(いろいろな量の変化率)

①毎秒$3cm^2$の割合で表面積が増加している球がある。
この球の半径が$4cm$になった瞬間における体積の変化率を求めよ。

②右の図のような直円錐の容器に、毎秒$3cm^3$の割合で水を注ぐ。
水面の高さが$6cm$になったときの水面の上昇する速度を求めよ。
この動画を見る 

福田のおもしろ数学488〜関数方程式

アイキャッチ画像
単元: #微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):

実数から実数への関数$f(x)$が

任意の実数$x,y$に対して

$f(x+f(y))=x+f(f(y))$

を満たしている。また$f(2025)=2026$である。

$f(x)$を求めよ。
    
この動画を見る 

【数Ⅲ】微分の公式 積・商・合成関数の微分【中身と外側を区別しよう】

アイキャッチ画像
単元: #微分とその応用#微分法#数学(高校生)#数Ⅲ
指導講師: めいちゃんねる
問題文全文(内容文):
微分の公式 積・商・合成関数の微分に関して解説していきます.
この動画を見る 

福田の1.5倍速演習〜合格する重要問題020〜東京工業大学2016年度理系数学第5問〜媒介変数で表された曲線の追跡と面積

アイキャッチ画像
単元: #大学入試過去問(数学)#平面上の曲線#微分とその応用#積分とその応用#微分法#定積分#学校別大学入試過去問解説(数学)#媒介変数表示と極座標#東京工業大学#数学(高校生)#数C#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
次のように媒介変数表示されたxy平面上の曲線をCとする。
$\left\{\begin{array}{1}
x=3\cos t-\cos3t
y=3\sin t-\sin3t
\end{array}\right.$
ただし、$0 \leqq t \leqq \frac{\pi}{2}$である。
(1)$\frac{dx}{dt}$および$\frac{dy}{dt}$を計算し、Cの概形を図示せよ。
(2)Cとx軸とy軸で囲まれた部分の面積を求めよ。

2016東京工業大学理系過去問
この動画を見る 

微分方程式(同次型) p 163, q3(1) 高専数学 数検1級

アイキャッチ画像
単元: #数学検定・数学甲子園・数学オリンピック等#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#数学検定#数学検定1級#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$xy\dfrac{dy}{dx}=x^2+y^2$の一般項を求めよ.
この動画を見る 
PAGE TOP