日本医科大・日大(医) Japanese university entrance exam questions - 質問解決D.B.(データベース)

日本医科大・日大(医) Japanese university entrance exam questions

問題文全文(内容文):
日本大学過去問題
$y=x^3-2x^2+2x-1$と1点で接し、その他の共有点をもたない直線の方程式を求めよ。

日本医科大学過去問題
$tx^4-x+3t=0$が異なる2つの実数解をもつような実数tの範囲
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#日本医科大学#日本大学#数学(高校生)#数Ⅲ
指導講師: 鈴木貫太郎
問題文全文(内容文):
日本大学過去問題
$y=x^3-2x^2+2x-1$と1点で接し、その他の共有点をもたない直線の方程式を求めよ。

日本医科大学過去問題
$tx^4-x+3t=0$が異なる2つの実数解をもつような実数tの範囲
投稿日:2018.07.26

<関連動画>

福田の数学〜名古屋大学2025理系第1問〜関数の増減と最大

アイキャッチ画像
単元: #大学入試過去問(数学)#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#数学(高校生)#名古屋大学#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):

$\boxed{1}$

(1)実数$x$を変数とする関数$f(x)$が導関数$f'(x)$および

第$2$次導関数$f''(x)$をもち、

すべての$x$に対し$f''(x)\gt 0$をみたすとする。

さらに以下の極限値$a,b(a\lt b)$が存在すると仮定する。

$\displaystyle \lim_{x\to -\infty} f'(x)=a,\displaystyle \lim_{x\to\infty}f'(x)=b$

このとき、

$a\lt c \lt b$をみたす任意の実数$c$に対し、

関数$g(x)=cx-f(x)$の値を最大にする

$x=x_0$がただひとつ存在することを示せ。

(2)実数$x$を変数とする関数

$f(x)=\log \left(\dfrac{e^x+e^{-x}}{2}\right)$

はすべての$x$に対し$f''(x)\gt 0$をみたすことを示せ。

また、この$f$に対し小問(1)の極限値$a,b$を求めよ。

(3)小問(2)の関数$f$および極限値$a,b$を考える。

$a \lt c \lt b$をみたす任意の実数$c$に対し

小問(1)の$x_0$および$g(x_0)$を$c$で表せ。

$2025$年名古屋大学理系過去問題
この動画を見る 

高専数学 微積II #2(1)(2) 2次近似式

アイキャッチ画像
単元: #数Ⅱ#微分法と積分法#微分とその応用#速度と近似式#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$x=0$における2次近似式を求め等式で表せ.

(1)$e^{3x}$
(2)$x\sqrt{1+x}$
この動画を見る 

【数Ⅲ】【微分とその応用】不等式の応用5 ※問題文は概要欄

アイキャッチ画像
単元: #微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#数学(高校生)#数Ⅲ
教材: #4S数学ⅢのB問題解説#中高教材#微分法の応用
指導講師: 理数個別チャンネル
問題文全文(内容文):
次のことが成り立つことを証明せよ。

$0≦x≦1$のとき

$1-x+x²e^x≦e^x≦1+x+\displaystyle \frac{1}{2}
x²e^x$
この動画を見る 

指数不等式

アイキャッチ画像
単元: #微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#数学(高校生)#数Ⅲ
指導講師: 鈴木貫太郎
問題文全文(内容文):
これを解け.

$\left(\dfrac{5}{3}\right)^{\frac{x^2+x-3}{x+1}}\leqq \dfrac{2}{3}・\left(\dfrac{5}{2}\right)^{x-\left(\frac{3}{x+1}\right)}$
この動画を見る 

【数Ⅲ】【微分とその応用】色々な関数の微分2 ※問題文は概要欄

アイキャッチ画像
単元: #微分とその応用#色々な関数の導関数#数Ⅲ
教材: #4S数学#4S数学ⅢのB問題解説#中高教材#微分法の応用
指導講師: 理数個別チャンネル
問題文全文(内容文):
対数微分法により次の関数を微分せよ。ただし、aは定数とする。

y= (x+1)²/((x+2)³(x+3)⁴)
以下、略

次の関数を微分せよ。ただし x>0 とする。
y= x^sinx
以下、略

lim_(k→0) (1+k)^(1/k)=e を用いて、次の極限を求めよ。
lim_(x→0) ((log(1+x)/x)
以下、略
この動画を見る 
PAGE TOP