合同式の基礎 累乗の式変形 - 質問解決D.B.(データベース)

合同式の基礎 累乗の式変形

問題文全文(内容文):
$3^{2n+1}+4^{3n-1}$が7の倍数となる自然数$n$を3つ求めよ
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$3^{2n+1}+4^{3n-1}$が7の倍数となる自然数$n$を3つ求めよ
投稿日:2019.12.26

<関連動画>

福田の1.5倍速演習〜合格する重要問題089〜東京工業大学2018年度理系第2問〜3変数の不定方程式の整数解

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#ユークリッド互除法と不定方程式・N進法#学校別大学入試過去問解説(数学)#東京工業大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{2}$ 次の問いに答えよ。
(1)35x+91y+65z=3 を満たす整数の組(x,y,z)を一組求めよ。
(2)35x+91y+65z=3 を満たす整数の組(x,y,z)の中で$x^2+y^2$の値が最小となるもの、およびその最小値を求めよ。

2018東京工業大学理系過去問
この動画を見る 

整数問題

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$m,n$は自然数である.これを解け.
$m^6+295=2^n$
この動画を見る 

整数問題 チャレンジ

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
自然数$(m,n)$をすべて求めよ。
$3^n-2^{n+1}=m^2$
この動画を見る 

兵庫県立大 整数問題 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #数A#数Ⅱ#大学入試過去問(数学)#式と証明#整数の性質#約数・倍数・整数の割り算と余り・合同式#恒等式・等式・不等式の証明#学校別大学入試過去問解説(数学)#数学(高校生)#兵庫県立大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
正整数$a$と正の奇数
$p,q$が$2^a+p^2=q^4$を満たしている。

(1)
$q^2-p=2$を証明せよ。

(2)
$q$を全て求めよ。


出典:兵庫県立大学 過去問
この動画を見る 

整数問題 昭和学院秀英

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
$\frac{1}{n^2+2n-1}$の値が整数となるような整数nの値をすべて求めよ。

昭和学院秀英高等学校
この動画を見る 
PAGE TOP